AEROSPACE SHANGHAI, Volume. 42, Issue 4, 180(2025)

Dual-band Infrared Image Fusion Method based on VMamba

Miao XIN1, Yang RUAN2, Yusong LI3、*, and Shaoyi LI3
Author Affiliations
  • 1Unit 93145 of the People's Liberation Army,Shanghai201109,China
  • 2Shanghai Academy of Spaceflight Technology,Shanghai201109,China
  • 3School of Astronautics,Northwestern Polytechnical University,Xi΄an710072,,China
  • show less
    Figures & Tables(11)
    Dual-band infrared image fusion network based on the VMamba
    Structure of the VMamba block
    Structure of the semantic feature extraction and fusion module
    Schematic diagram of the target and its neighborhood
    Qualitatively experimental results
    • Table 1. Pseudo-code process of the S6 module

      View table
      View in Article

      Table 1. Pseudo-code process of the S6 module

      算法:S6
      输入:图像特征序列xRB×L×S,其中,B为批次大小,L为token长度,S为特征维度大小。
      参数:AD可训练的参数矩阵。

      操作:LLinear(),线性投影操作,EEmbedding(),块嵌入操作。

      输出:图像特征序列yRB×L×S

      1) 将x通过不同的线性投影操作得到Δ,B,C

      Δ,B,C=LLinear(x),LLinear(x),LLinear(x) (7)

      2) 参数离散化:

      A¯=ΔA (8)

      B¯=(ΔA)-1(ΔA-I)ΔB (9)

      式中:Δ为时间步长,用于控制关注或忽略当前输入的程度,类似于遗忘门。

      3) 计算下一状态ht:

      ht=A¯ht-1+B¯xt (10)

      4) 计算当前计算单元的输出:

      yt=Cht+Dxt (11)

      5) 合并所有计算单元的输出:

      y=y1,y2,,yL (12)

      6) 返回yRB×L×S
    • Table 2. Experimental environment

      View table
      View in Article

      Table 2. Experimental environment

      配置版本
      系统Windows10/Ubuntu 18.04
      CPUIntel®Core(TM) i9-10900X,3.70 Hz
      显卡GeForce GTX 3090
      显存/GB24
      CUDA12.1
      CuDNN8.9.5
      Cudatoolkit12.1
      深度学习框架PyTorch1.12.1
    • Table 3. Quantitatively experimental results of the fusion algorithm

      View table
      View in Article

      Table 3. Quantitatively experimental results of the fusion algorithm

      类型算法名称SCR↑BR
      源图像Long Wave0.305 8860.001 585
      Mid Wave0.640 4640.004 022
      传统算法LP0.605 0970.004 096
      RP0.618 8280.004 045
      CVT0.628 4300.004 062
      MSVD0.445 6680.002 893
      深度学习算法DDcGAN0.382 6070.003 636
      SwinFusion0.626 2620.004 019
      RFN-Nest0.415 4630.004 893
      Ours0.638 5140.002 846
    • Table 4. Computational efficiency results

      View table
      View in Article

      Table 4. Computational efficiency results

      算法名称参数量/MFLOPs/GFPS↑
      DDcGAN2.040 923.415 95.414 5
      SwinFusion0.927 5327.677 80.606 1
      RFN-Nest7.524 2555.529 313.038 0
      Ours0.672 216.571 323.630 5
    • Table 5. Results of the ablation experiments on the network structures

      View table
      View in Article

      Table 5. Results of the ablation experiments on the network structures

      VMamba

      特征提取

      目标与杂波

      语义特征提取

      混合特征

      融合模块

      SCR↑BR↓
      0.521 5640.003 814
      0.588 0060.003 228
      0.638 5140.002 846
    • Table 6. Results of the ablation experiments on the key parameters

      View table
      View in Article

      Table 6. Results of the ablation experiments on the key parameters

      目标语义特征权重杂波语义特征权重SCR↑BR↓
      α=0β=10.508 6480.002 380
      α=1β=10.543 7060.003 048
      α=5β=10.586 8350.003 688
      α=5β=20.559 2350.003 275
      α=12β=20.596 2770.002 955
      α=20β=30.572 8770.003 626
      α˜=12β˜=20.638 5140.002 846
    Tools

    Get Citation

    Copy Citation Text

    Miao XIN, Yang RUAN, Yusong LI, Shaoyi LI. Dual-band Infrared Image Fusion Method based on VMamba[J]. AEROSPACE SHANGHAI, 2025, 42(4): 180

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Speciality Discussion

    Received: Oct. 17, 2024

    Accepted: --

    Published Online: Sep. 29, 2025

    The Author Email:

    DOI:10.19328/j.cnki.2096-8655.2025.04.019

    Topics