Laser & Optoelectronics Progress, Volume. 59, Issue 2, 0210005(2022)

Insulator Burst Fault Identification Based on YOLOv4

Jianchen Gao, Jiahong Zhang*, Yingna Li, and Chuan Li
Author Affiliations
  • Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming , Yunnan 650000, China
  • show less
    Figures & Tables(11)
    YOLOv4 network structure
    PANet network structure. (a) FPN backbone; (b) bottom-up path augmentation
    CIOU schematic diagram
    Data augmentation
    Marking of insulator samples
    Mosaic data augmentation
    Convergence curve of loss function
    Simulation test results. (a) No background interference; (b)(c) with towers interference; (d) single target; (e) double target; (f) multi-target
    P-R curves of K-means++ YOLOv4 model. (a) Insulator identification; (b) insulator burst fault identification
    Comparison of performance indicators of different detection algorithms
    • Table 1. Test results

      View table

      Table 1. Test results

      TargetTPFPFN
      Insulator4490709228
      Insulator damage2654713
    Tools

    Get Citation

    Copy Citation Text

    Jianchen Gao, Jiahong Zhang, Yingna Li, Chuan Li. Insulator Burst Fault Identification Based on YOLOv4[J]. Laser & Optoelectronics Progress, 2022, 59(2): 0210005

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Image Processing

    Received: Jan. 20, 2021

    Accepted: Mar. 9, 2021

    Published Online: Dec. 23, 2021

    The Author Email: Jiahong Zhang (zjh_mit@163.com)

    DOI:10.3788/LOP202259.0210005

    Topics