Laser & Infrared, Volume. 54, Issue 3, 323(2024)
Research progress and application of mid-infrared cavity ring-down spectroscopy
[1] [1] Hinkley E D. High-Resolution infrared spectroscopy with a tunable diode laser[J]. Applied Physics Letters, 1970, 16(9): 351-354.
[2] [2] Ghorbani R, Schmidt F M. ICL-based TDLAS sensor for real-time breath gas analysis of carbon monoxide isotopes[J]. Optics Express, 2017, 25(11): 12743-12752.
[3] [3] Nie W, Kan R F, Yang C G, et al. Research progress on the application of tunable diode laser absorption spectroscopy[J]. Chinese Journal of Lasers, 2018, 45(9): 0911001.
[4] [4] Van Helden J H, Lang N, Macherius U, et al. Sensitive trace gas detection with cavity enhanced absorption spectroscopy using a continuous wave external-cavity quantum cascade laser[J]. Applied Physics Letters, 2013, 103(13).
[7] [7] Scherer J J, Paul J B, O'keefe A, et al. Cavity ringdown laser absorption spectroscopy: history, development, and application to pulsed molecular beams[J]. Chemical Reviews, 1997, 97(1): 25-52.
[8] [8] Ye J, Ma L S, Hall J L. Sub-Doppler optical frequency reference at 1.064 m by means of ultrasensitive cavity-enhanced frequency modulation spectroscopy of a C 2 HD overtone transition[J]. Optics Letters, 1996, 21(13): 1000-1002.
[9] [9] Weiguang M, Yueting Z, Gang Z, et al. Review on Noise Immune Cavity Enhanced Optical Heterodyne Molecular Spectroscopy[J]. Chinese Journal of Lasers-Zhongguo Jiguang, 2018, 45(9).
[10] [10] Anderson D Z, Frisch J C, Masser C S. Mirror reflectometer based on optical cavity decay time[J]. Applied Optics, 1984, 23(8): 1238-1245.
[11] [11] O'Keefe A, Deacon D A G. Cavity ring-down optical spectrometer for absorption measurements using pulsed laser sources[J]. Review of Scientific Instruments, 1988, 59(12): 2544-2551.
[12] [12] Romanini D, Kachanov A A, Sadeghi N, et al. CW cavity ring down spectroscopy[J]. Chemical Physics Letters, 1997, 264(3-4): 316-322.
[16] [16] Maity A, Maithani S, Pradhan M. Cavity ring-down spectroscopy: recent technological advancements, techniques, and applications[J]. Analytical Chemistry, 2020, 93(1): 388-416.
[17] [17] Wang Y, Ma G M, Zheng D, et al. Gas concentration sensing based on fiber loop ring-down spectroscopy: a review[J]. IEEE Transactions on Instrumentation and Measurement, 2021, 70: 1-16.
[18] [18] Maithani S, Pradhan M. Cavity ring-down spectroscopy and its applications to environmental, chemical and biomedical systems[J]. Journal of Chemical Sciences, 2020, 132: 1-19.
[19] [19] Faist J, Gmachl C, Capasso F, et al. Distributed feedback quantum cascade lasers[J]. Applied Physics Letters, 1997, 70(20): 2670-2672.
[20] [20] Beck M, Hofstetter D, Aellen T, et al. Continuous wave operation of a mid-infrared semiconductor laser at room temperature[J]. Science, 2002, 295(5553): 301-305.
[21] [21] Sukhorukov O, Lytkine A, Manne J, et al. Cavity ring-down spectroscopy with a pulsed distributed feedback quantum cascade laser[C]//Quantum Sensing and Nanophotonic Devices III. SPIE, 2006, 6127: 58-68.
[22] [22] Zhou S, Han Y, Li B. Simultaneous detection of ethanol, ether and acetone by mid-infrared cavity ring-down spectroscopy at 3.8 m[J]. Applied Physics B, 2016, 122: 1-8.
[23] [23] Romanini D, Kachanov A A, Stoeckel F. Diode laser cavity ring down spectroscopy[J]. Chemical Physics Letters, 1997, 270(5-6): 538-545.
[24] [24] Banik G D, Som S, Maity A, et al. An EC-QCL based N 2 O sensor at 5.2 m using cavity ring-down spectroscopy for environmental applications[J]. Analytical Methods, 2017, 9(15): 2315-2320.
[25] [25] Maithani S, Mandal S, Maity A, et al. High-resolution spectral analysis of ammonia near 6.2 m using a cw EC-QCL coupled with cavity ring-down spectroscopy[J]. Analyst, 2018, 143(9): 2109-2114.
[27] [27] He Y, Orr B J. Rapidly swept, continuous-wave cavity ringdown spectroscopy with optical heterodyne detection: single-and multi-wavelength sensing of gases[J]. Applied Physics B, 2002, 75: 267-280.
[28] [28] Bostrom G, Rice A, Atkinson D. Optical injection unlocking for cavity ringdown spectroscopy[J]. Optics Letters, 2014, 39(14): 4227-4230.
[29] [29] Kriinen T, Genoud G. Optical interruption of a quantum cascade laser for cavity ring-down spectroscopy[J]. Optics Letters, 2019, 44(21): 5294-5297.
[30] [30] Whittaker K E, Ciaffoni L, Hancock G, et al. A DFG-based cavity ring-down spectrometer for trace gas sensing in the mid-infrared[J]. Applied Physics B, 2012, 109(2): 333-343.
[31] [31] Gmachl C, Capasso F, Sivco D L, et al. Recent progress in quantum cascade lasers and applications[J]. Reports on progress in physics, 2001, 64(11): 1533.
[32] [32] Brown S S. Absorption spectroscopy in high-finesse cavities for atmospheric studies[J]. Chemical reviews, 2003, 103(12): 5219-5238.
[34] [34] Kiseleva M, Mandon J, Persijn S, et al. Accurate measurements of line strengths and air-broadening coefficients in methane around 1.66 m using cavity ring down spectroscopy[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2019, 224: 9-17.
[36] [36] Chen H, Winderlich J, Gerbig C, et al. High-accuracy continuous airborne measurements of greenhouse gases (CO2 and CH4) using the cavity ring-down spectroscopy (CRDS) technique[J]. Atmospheric Measurement Techniques, 2010, 3(2): 375-386.
[37] [37] Tang J, Li B, Wang J. High-precision measurements of nitrous oxide and methane in air with cavity ring-down spectroscopy at 7.6 m[J]. Atmospheric Measurement Techniques, 2019, 12(5): 2851-2861.
[38] [38] Paldus B A, Harb C C, Spence T G, et al. Cavity ringdown spectroscopy using mid-infrared quantum-cascade lasers[J]. Optics Letters, 2000, 25(9): 666-668.
[39] [39] Genoud G, Vainio M, Phillips H, et al. Radiocarbon dioxide detection based on cavity ring-down spectroscopy and a quantum cascade laser[J]. Optics Letters, 2015, 40(7): 1342-1345.
[40] [40] Rogalski A. History of infrared detectors[J]. Opto-Electronics Review, 2012, 20: 279-308.
[41] [41] Liang W, Ilchenko V S, Savchenkov A A, et al. Whispering-gallery-mode-resonator-based ultranarrow linewidth external-cavity semiconductor laser[J]. Optics Letters, 2010, 35(16): 2822-2824.
[44] [44] Sigrist M W. Trace gas monitoring by laser photoacoustic spectroscopy and related techniques (plenary)[J]. Review of Scientific Instruments, 2003, 74(1): 486-490.
[45] [45] Boucher O, Friedlingstein P, Collins B, et al. The indirect global warming potential and global temperature change potential due to methane oxidation[J]. Environmental Research Letters, 2009, 4(4): 044007.
[46] [46] Maity A, Pal M, Banik G D, et al. Cavity ring-down spectroscopy using an EC-QCL operating at 7.5 m for direct monitoring of methane isotopes in air[J]. Laser Physics Letters, 2017, 14(11): 115701.
[48] [48] Wei Q, Li B, Wang J, et al. Impact of residual water vapor on the simultaneous measurements of trace CH4 and N2O in air with cavity ring-down spectroscopy[J]. Atmosphere, 2021, 12(2): 221.
[49] [49] Banik G D, Mizaikoff B. Exhaled breath analysis using cavity-enhanced optical techniques: A review[J]. Journal of Breath Research, 2020, 14(4): 043001.
[50] [50] Manne J, Sukhorukov O, Jger W, et al. Pulsed quantum cascade laser-based cavity ring-down spectroscopy for ammonia detection in breath[J]. Applied optics, 2006, 45(36): 9230-9237.
[51] [51] Zhou S, Han Y, Li B. Pressure optimization of an EC-QCL based cavity ring-down spectroscopy instrument for exhaled NO detection[J]. Applied Physics B, 2018, 124: 1-8.
[52] [52] Kim A, Dueker S R, Dong F, et al. Human ADME for YH12852 using wavelength scanning cavity ring-down spectroscopy (WS-CRDS) after a low radioactivity dose[J]. Bioanalysis, 2020, 12(2): 87-98.
[53] [53] Kutschera W. Applications of accelerator mass spectrometry[J]. International Journal of Mass Spectrometry, 2013, 349: 203-218.
[54] [54] Huskisson N S, Ward P F V. A reliable method for scintillation counting of 14CO2 trapped in solutions of sodium hydroxide, using a scintillant suitable for general use[J]. The International Journal of Applied Radiation and Isotopes, 1978, 29(12): 729-734.
[55] [55] Brown R M, Andrews H R, Ball G C, et al.14C content of ten meteorites measured by tandem accelerator mass spectrometry[J]. Earth and Planetary Science Letters, 1984, 67(1): 1-8.
[56] [56] Panda B, Maithani S, Pradhan M. High-resolution investigation of temperature and pressure-induced spectroscopic parameters of C-13-isotopomer of CH4 in the nu(4) band using cavity ring-down spectroscopy[J]. Chemical Physics, 2020, 535.
[57] [57] Pal M, Maithani S, Maity A, et al. Simultaneous monitoring of 32 S, 33 S and 34 S isotopes of H 2 S using cavity ring-down spectroscopy with a mid-infrared external-cavity quantum cascade laser[J]. Journal of Analytical Atomic Spectrometry, 2019, 34(5): 860-866.
[58] [58] Terabayashi R, Saito K, Sonnenschein V, et al. Mid-infrared cavity ring-down spectroscopy using DFB quantum cascade laser with optical feedback for radiocarbon detection[J]. Japanese Journal of Applied Physics, 2020, 59(9): 092007.
[59] [59] Lehmuskoski J, Vasama H, Hamalainen J, et al. On-line monitoring of radiocarbon emissions in a nuclear facility with cavity ring-down spectroscopy[J]. Analytical Chemistry, 2021, 93(48): 16096-16104.
[60] [60] Bahrini C, Bnilan Y, Jolly A, et al. Pulsed cavity ring-down spectrometer at 3 m based on difference frequency generation for high-sensitivity CH4 detection[J]. Applied Physics B, 2015, 121: 533-539.
[61] [61] Kosterev A A, Malinovsky A L, Tittel F K, et al. Cavity ringdown spectroscopic detection of nitric oxide with a continuous-wave quantum-cascade laser[J]. Applied Optics, 2001, 40(30): 5522-5529.
[62] [62] Sumizawa H, Yamada H, Tonokura K. Real-time monitoring of nitric oxide in diesel exhaust gas by mid-infrared cavity ring-down spectroscopy[J]. Applied Physics B, 2010, 100: 925-931.
[63] [63] De A, Banik G D, Maity A, et al. Continuous wave external-cavity quantum cascade laser-based high-resolution cavity ring-down spectrometer for ultrasensitive trace gas detection[J]. Optics letters, 2016, 41(9): 1949-1952.
[64] [64] Namjou K, Cai S, Whittaker E A, et al. Sensitive absorption spectroscopy with a room-temperature distributed-feedback quantum-cascade laser[J]. Optics Letters, 1998, 23(3): 219-221.
[65] [65] Yamamoto Y, Sumizawa H, Yamada H, et al. Real-time measurement of nitrogen dioxide in vehicle exhaust gas by mid-infrared cavity ring-down spectroscopy[J]. Applied Physics B, 2011, 105: 923-931.
[66] [66] Gadedjisso-Tossou K S, Stoychev L I, Mohou M A, et al. Cavity ring-down spectroscopy for molecular trace gas detection using a pulsed DFB QCL emitting at 6.8 m[C]//Photonics. MDPI, 2020, 7(3): 74.
[67] [67] Peltola J, Vainio M, Ulvila V, et al. Off-axis re-entrant cavity ring-down spectroscopy with a mid-infrared continuous-wave optical parametric oscillator[J]. Applied Physics B, 2012, 107: 839-847.
[68] [68] Vigo. Inas room temperature photovoltaic infrared detector[EB/OL]. (2023-01-30) [2023-05-25]. Https://vigophotonics.com/product/pva-3-1x1-to39-nw-90/
[69] [69] Thorlabs. PDA015C(/M) ingaas Amplified Detector User Guide[EB/OL]. (2017-03-22) [2023-05-25]. Https://www.thorlabs.com/thorproduct.cfm?Partnumber=PDA015C/M.
Get Citation
Copy Citation Text
SUN Le, MO Ze-qiang, HU Yu-yuan, TANG Ji-long, WEI Zhi-peng. Research progress and application of mid-infrared cavity ring-down spectroscopy[J]. Laser & Infrared, 2024, 54(3): 323
Category:
Received: Jul. 3, 2023
Accepted: Jun. 4, 2025
Published Online: Jun. 4, 2025
The Author Email: TANG Ji-long (jl_tangcust@163.com)