Journal of Optoelectronics · Laser, Volume. 36, Issue 6, 561(2025)
A high-speed and high-power modified uni-traveling carrier photodiode at 1 310 nm wavelength
[1] [1] SEFATI S S, HALUNGA S. Ultra-reliability and low-latency communications on the internet of things based on 5G network: Literature review, classification, and future research view[J]. Transactions on Emerging Telecommunications Technologies, 2023, 34(6):e4770.
[2] [2] CHAHAR S, KAUR K. Internet of things with 5 G technology: a critical review[C]//2023 3rd International Conference on Advance Computing and Innovative Technologies in Engineering (ICACITE), May 12-13, 2023, Greater Noida, India. New York: IEEE, 2023:1402-1406.
[3] [3] MATIN M A, GOUDOS S K, WAN S, et al. Artificial intelligence (AI) and machine learning (ML) for beyond 5G/6G communications[J]. EURASIP Journal on Wireless Communications and Networking, 2023, 2023(1):1-3.
[4] [4] ATTARAN M. The impact of 5G on the evolution of intelligent automation and industry digitization[J]. Journal of Ambient Intelligence and Humanized Computing, 2023, 14(5):5977-5993.
[5] [5] RATHER I A, KUMAR G, SAHA R. Survey on RoF technology and the mitigation schemes over the challenges in the RoF network[J]. Optik, 2021, 247:168007.
[6] [6] COSTANZO R, GAO J, SHEN X, et al. Low-noise balanced photoreceiver with InP-on-Si photodiodes and SiGe BiCMOS transimpedance amplifier[J]. Journal of Lightwave Technology, 2021, 39(14):4837-4846.
[7] [7] JUN D H, JANG J H, ADESIDA I, et al. Improved efficiency-bandwidth product of modified uni-traveling-carrier photodiode structures using an undoped photo-absorption layer[J]. Japanese Journal of Applied Physics, 2006, 45(4S):3475.
[8] [8] ISHIBASHI T, SHIMIZU N, KODAMA S, et al. Uni-traveling-carrier photodiodes[C]//Ultrafast Electronics and Optoelectronics, March 17-19, 1997, Nevada, USA. Washington: Optica Publishing Group, 1997:UC3.
[9] [9] XIE Z Y, CHEN Y J, ZHANG N T, et al. InGaAsP/InP uni-traveling-carrier photodiode at 1 064 nm wavelength[J]. IEEE Photonics Technology Letters, 2019, 31(16):1331-1334.
[11] [11] WANG X, HUANG Y, TAN S, et al. Bandwidth optimization and fabrication of high-power MUTC-PD[J]. IEEE Journal of Quantum Electronics, 2024, 60(2):1-6.
[12] [12] GOEL P, KAUSHIK R. Wavelength division multiplexed radio-over-fiber (WDM-RoF) system for next-generation networks with dispersion compensating fiber[J]. Journal of Optical Communications, 2024, 45(4):771-778.
[13] [13] SINGLA S, ARYA S K. Impact of higher order dispersion on phase induced power penalty for RoF systems[J]. Optik, 2013, 124(14):1917-1920.
[14] [14] HUANG Y L, SUN C K. Nonlinear saturation behaviors of high-speed p-i-n photodetectors[J]. Journal of Lightwave Technology, 2000, 18(2):203-212.
[15] [15] WILLIAMS K J. Comparisons between dual-depletion-region and uni-travelling-carrier pin photodetectors[J]. IEEE Proceedings-Optoelectronics, 2002, 149(4):131-137.
[16] [16] GHIONE G. Semiconductor devices for high-speed optoelectronics[M]. Cambridge: Cambridge University Press, 2009.
[17] [17] LIU T, HUANG Y Q, NIU H J, et al. Design of bias-free operational uni-traveling-carrier photodiodes for terahertz wave generation[J]. Optical and Quantum Electronics, 2018, 50:1-16.
Get Citation
Copy Citation Text
TAN Shuhu, WANG Xuejie, HUANG Yongqing, LIU Kai, DUAN Xiaofeng, REN Xiaomin. A high-speed and high-power modified uni-traveling carrier photodiode at 1 310 nm wavelength[J]. Journal of Optoelectronics · Laser, 2025, 36(6): 561
Category:
Received: Jan. 19, 2024
Accepted: Jun. 24, 2025
Published Online: Jun. 24, 2025
The Author Email: HUANG Yongqing (yqhuang@bupt.edu.cn)