Acta Laser Biology Sinica, Volume. 28, Issue 3, 219(2019)
Advances in the Application of Hydrophobic SERS Detection Substrate
[1] [1] RAMAN C V, KRISHNAN K S. A new type of secondary radiation[J]. Nature, 1928, 121(3048): 501-502.
[2] [2] FLEISCHMANN M, HENDRA P J, MCQUILLAN A J. Raman-spectra of pyridine adsorbed at a silver electrode[J]. Chemical Physics Letters, 1974, 26(2): 163-166.
[3] [3] JEANMAIRE D L,VANDUYNE R P. Surface Raman spectroelectrochemistry:Part 1. heterocyclic, aromatic, and aliphatic amines adsorbed on anodized silver electrode[J]. Journal of Electroanalytical Chemistry, 1977, 84(1): 1-20.
[4] [4] ALBRECHT M G,CREIGHTON J A. Anomalously intense Raman spectra of pyridine at a silver electrode[J]. Journal of the American Chemical Society, 1977, 99(15): 5215-5217.
[5] [5] HUBBELL J A, CHILKOTI A. Nanomaterials for drug dlivery[J]. Science, 2012, 337(6092): 303-305.
[6] [6] HONG S, LI X. One step surface modification of gold nanoparticles for surface-enhanced Raman spectroscopy[J]. Applied Surface Science, 2013, 287: 318-324.
[7] [7] PRISTINSKI D, TAN S L, EROL M, et al. In situ SERS study of Rhodamine 6G adsorbed on individually immobilized Ag nanoparticles[J]. Journal of Raman Spectroscopy, 2006, 37(7): 762-770.
[8] [8] REN B, LIU G K, LIAN X B, et al. Raman spectroscopy on transition metals[J]. Analytical and Bioanalytical Chemistry, 2007, 388(1): 29-45.
[9] [9] TIAN Z Q, REN B, WU D Y. Surface-enhanced Raman scattering:from noble to transition metals and from rough surfaces to ordered nanostructures[J]. Journal Physical Chemistry,2002, 106(37): 9463-9483.
[10] [10] CAO P, REN B, TIAN Z Q, et al. Surface-enhanced Raman scattering of pyridine on platinum and nickel electrodes in nonaqueous solutions[J]. Chemical Physicals Letters, 2002, 366(3-4): 440-446.
[11] [11] CHILUKURI S. Dicke superradiance and stimulated electronic Raman scattering of indium[J]. Physical Review A: Atomic Molecular and Optical Physics, 1996, 54(1): 908-916.
[12] [12] AMENDOLA V, SCARAMUZZA S, AGNOLI S, et al. Strong dependence of surface plasmon resonance and surface enhanced Raman scattering on the composition of Au-Fe nanoalloys[J]. Nanoscale, 2014, 6: 1423-1433.
[13] [13] KANG S W, LEE Y W, PARK Y, et al. One-pot synthesis of trimetallic Au@PdPt core-shell nanoparticles with high catalytic performance[J]. ACS Nano, 2013, 7(9): 7945-7955.
[14] [14] LI J F, HUANG Y F, DING Y, et al. Shell-isolated nanoparticle-enhanced Raman spectroscopy[J]. Nature, 2010, 464(7287): 392-395.
[15] [15] ZHANG K, HU Y, LI G. Diazotization-coupling reaction-based selective determination of nitrite in complex samples using shell-isolated nanoparticle-enhanced Raman spectroscopy[J]. Talanta, 2013, 116: 712-718.
[16] [16] ZONG Shenfei, CUI Yiping, WANG Zhuyuan, et al. Preparation of a surface-enhanced Raman scattering probe based on graphene. China. CN102590173A[P]. 2012-07-18.
[17] [17] NIEN L W, CHIEN M H, CHAO B K, et al. 3D nanostructures of silver nanoparticle-decorated suspended graphene for SERS detection[J]. Journal of Physical Chemistry C, 2016, 120(6): 3448-3457.
[18] [18] HAYASHI S, KOH R, YAMAMOTO K, et al. Evidence for surface-enhanced Raman scattering on nonmetallic surfaces:copper phthalocyanine molecules on GaP small particles[J]. Physical Review Letters, 1988, 60(11): 1085-1088.
[19] [19] YANG L H, LV J, SUI Y M, et al. Fabrication of Cu2O/Ag composite nanoframes as surface-enhanced Raman scattering substrates in a successive one-pot procedure[J]. CrystengComm, 2014, 16(11): 2298-2304.
[20] [20] PISAREK M, ROGUSKA A, KUDELSKI A, et al. The role of Ag particles deposited on TiO2 or Al2O3 self-organized nanoporous layers in their behavior as SERS-active and biomedical substrates[J]. Materials Chemistry and Physics, 2013, 139(1): 55-65.
[21] [21] YOUNG T. An essay on the cohesion of fluids[J]. Royal Society of London Philosophical Transactions, 1805, 95: 65-87.
[22] [22] WANG Ben, NIAN Jingyan, TIE Lu, et al. Theoretical progress in stabilizing superhydrophobic surface[J]. Acta Physica Sinica, 2013, 62(14): 362-376.
[23] [23] WENZEL R N. Resistance of solid surfaces to wetting by water[J]. Industrial & Engineering Chemistry, 1936, 28(8): 988-994.
[24] [24] CASSIE A B D, BAXTER S. Wettability of porous surfaces[J]. Transactions of the Faraday Society, 1944, 40: 546-551.
[25] [25] ANGELIS F D, GENTILE F, MECARINI F, et al.Breaking the diffusion limit with super-hydrophobic delivery of molecules to plasmonic nanofocusing SERS structures[J]. Nature Photonics, 2011, 5(11): 682-687.
[26] [26] GENTILE F, COLUCCIO M L, ACCARDO A, et al. Nanoporous-micropatterned-superhydrophobic surfaces as harvesting agents for few low molecular weight molecules[J]. Microelectronic Engineering, 2011, 88(8): 1749-1752.
[27] [27] FU E, LIANG T, HOUGHTALING J, et al. Enhanced sensitivity of lateral flow tests using a two-dimensional paper network format[J]. Analytical Chemistry, 2011, 83(20): 7941-7946.
[28] [28] AZIZI SAMIR M A S, ALLOIN F, DUFRESNE A. Review of recent research into cellulosic whiskers, their properties and their application in nanocomposite field[J].Biomacromolecules, 2005, 6(2): 612-626.
[29] [29] YU W W, WHITE I M. Inkjet printed surface enhanced Raman spectroscopy array on cellulose paper[J]. Analytical Chemistry, 2010, 82(23): 9626-9630.
[30] [30] TORUL H, CIFTCI H, CETIN D, et al. Paper membrane-based SERS platform for the determination of glucose in blood samples[J]. Analytical and Bioanalytical Chemistry, 2015, 407(27): 8243-8251.
[31] [31] ZHANG R, XU B B, LIU X Q, et al. Highly efficient SERS test strips[J]. Chemical Communications, 2012, 48(47): 5913-5915.
[32] [32] YU C C, CHOU S Y, TSENG Y C, et al. Single-shot laser treatment provides quasi-three-dimensional paper-based substrates for SERS with attomolar sensitivity[J].Nanoscale, 2015, 7(5): 1667-1677.
[33] [33] HE L L, LIU C Q, TANG J, et al. Phase confinement of self-migrated plasmonic silver in triphasic system:offering 3D hot spots on hydrophobic paper for SERS detection[J].Applied Surface Science, 2018, 450: 138-145.
[34] [34] HUANG Z F, SIDDHANTA S, ZHANG C, et al. Painting and heating:a nonconventional, scalable route to sensitive biomolecular analysis with plasmon-enhanced spectroscopy[J].Journal Raman Spectroscopy, 2017, 48(10):1365-1374.
[35] [35] BAUGHMAN R H, ZAKHIDOV A A, DE HEER W A. Carbon nanotubes-the route toward applications[J]. Science, 2002, 297(5582): 787-792.
[36] [36] LI X M, HE T, CREGO-CALAMA M, et al. Conversion of a metastable superhydrophobic surface to an ultraphobic surface[J]. Langmuir, 2008, 24(15): 8008-8012.
[37] [37] HAN W, WU D, MING W, et al. Direct catalytic route to superhydrophobic polyethylene films[J]. Langmuir, 2006, 22(19): 7956-7959.
[38] [38] FENG L, LI S, LI H, et al.Super-hydrophobic surface of aligned polyacrylonitrile nanofibers[J]. Angewandte Chemie(International EditionIn English), 2002, 41(7): 1221-1223.
[39] [39] XIAO Dongyang. Preparation of superhydrophobic substrate and optimization of SERS test method[D]. Changchun:Jilin University, 2017.
[40] [40] YE X R, WAI C M, ZHANG D, et al. Immersion deposition of metal films on silicon and germanium substrates in supercritical carbon dioxide [J]. Chemistry of Materials, 2003, 15(1): 83-91.
[41] [41] HUANG Z, GEYER N, WERNER P, et al. Metal-assisted chemical etching of silicon:a review [J]. Advanced Materials, 2011, 23(2): 285-308.
[42] [42] KALKAN A K, FONASH S J. Electroless synthesis of Ag nanoparticles on deposited nanostructured Si films[J]. The Journal of Physical Chemistry B, 2005,109(44): 20779-20785.
[43] [43] KOLASINSKI K W. Silicon nanostructures from electroless electrochemical etching[J]. Current Opinion in Solid State and Materials Science, 2005, 9(1-2): 73-83.
[44] [44] MEGOUDA N, DOUANI R, HADJERSI T, et al. Formation of aligned silicon nanowire on silicon by electroless etching in HF solution[J]. Journal of Luminescence, 2009, 129(12): 1750-1753.
[45] [45] LI Ning. Improving the detection performance of surface enhanced Raman spectroscopy and laser desorption ionization mass spectrometry using micro/nano structure[D]. Changchun:Jilin University, 2017.
[46] [46] PENG K Q, HU J J, YAN Y J, et al. Fabrication of single-crystalline silicon nanowires by scratching a silicon surface with catalytic metal particles[J]. Advanced Functional Materials, 2006, 16(3): 387-394.
[47] [47] PENG K Q, WU Y, FANG H, et al. Uniform, axial-orientation alignment of one-dimensional single-crystal silicon nanostructure arrays[J]. Angewandte Chemie(International Edition In English), 44(18): 2737-2742.
[48] [48] CHEN X X, WEN J X, ZHOU J H, et al. Superhydrophobic SERS substrates based on silicon hierarchical nanostructures[J]. Journal of Optics, 2018, 20(2): 024012.
[49] [49] KIRALY B, YANG S, HUANG T J. Multifunctional porous silicon nanopillar arrays:antireflection, superhydrophobicity, photoluminescence, and surface-enhanced Raman scattering[J]. Nanotechnology, 2013, 24(24): 245704.
[50] [50] ZHANG Q X, CHEN Y X, GUO Z, et al. Bioinspired multifunctional hetero-hierarchical micro/nanostructure tetragonal array with self-cleaning, anticorrosion, and concentrators for the SERS detection[J]. ACS Applied Materials & Interfaces, 2013, 5(21): 10633-10642.
[51] [51] LEE H K, LEE Y H, ZHANG Q, et al.Superhydrophobic surface-enhanced Ramanscattering platform fabricated by assembly of Ag nanocubes for trace molecular sensing[J]. ACS Applied Materials & Interfaces, 2013, 5(21): 11409-11418.
[52] [52] XU F, ZHANG Y, SUN Y, et al. Silver nanoparticles coated zinc oxide nanorods array as superhydrophobic substrate for the amplified SERS effect[J]. The Journal of Physical Chemistry C, 2011, 115(20): 9977-9983.
[53] [53] ZHAO H, JIN J, TIAN W, et al. Three-dimensional superhydrophobic surface-enhanced Raman spectroscopy substrate for sensitive detection of pollutants in real environments using an oil-water separation system[J]. Journal of Materials Chemistry, 2015, 3(8): 4330-4337.
[54] [54] YANG S K, DAI X M, STOGIN B B, et al. Ultrasensitive surface-enhanced Raman scattering detection in common fluids[J]. Proceedings of The National Academy of Sciences of The United States of America, 2016, 113(2): 268-273.
[55] [55] YAN Z X, ZHANG Y L, WANG W, et al. Superhydrophobic sers substrates based on silver-coated reduced graphene oxide gratings prepared by two-beam laser interference[J].ACS Applied Materials & Interfaces, 2015, 7(49): 27059-27065.
[56] [56] CHOU S Y, YU C C, YEN Y T, et al. Romantic story or Raman scattering rose petals as ecofriendly, low-cost substrates for ultrasensitive surface-enhanced Raman scattering[J]. Analytical Chemistry, 2015, 87(12): 6017-6024.
Get Citation
Copy Citation Text
MIAO Xuchao, LIANG Xiaozhou, LIU Mengmeng, LIN Xueliang, HUANG Zufang. Advances in the Application of Hydrophobic SERS Detection Substrate[J]. Acta Laser Biology Sinica, 2019, 28(3): 219
Category:
Received: Oct. 15, 2018
Accepted: --
Published Online: Aug. 7, 2019
The Author Email: Zufang HUANG (zfhuang@fjnu.edu.cn)