Journal of the Chinese Ceramic Society, Volume. 53, Issue 4, 839(2025)

Stability and Mechanism of SiO2 Modified Ag10Si4O13/GO for Photocatalytic Degradation of Methylene Blue

LI Cuixia... YUAN Bo, ZHANG Xin, WANG Anhang, ZHANG Youyou, JIN Haize and YANG Zhizhong |Show fewer author(s)
Author Affiliations
  • State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, School of Material Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China
  • show less
    References(29)

    [1] [1] WANG G J, LV S S, SHEN Y H, et al. Advancements in heterojunction, cocatalyst, defect and morphology engineering of semiconductor oxide photocatalysts[J]. J Materiomics, 2024, 10(2): 315–338.

    [2] [2] ZHANG Y, LIU J, KANG Y S, et al. Silver based photocatalysts in emerging applications[J]. Nanoscale, 2022, 14(33): 11909–11922.

    [3] [3] XUE W J, HUANG D L, WEN X J, et al. Silver-based semiconductor Z-scheme photocatalytic systems for environmental purification[J]. J Hazard Mater, 2020, 390: 122128.

    [4] [4] ZHENG W S, ZHU Z J, SHA R, et al. Layered oxyiodide CdBiO2I: An efficient visible light responsive and scalable photocatalyst[J]. J Materiomics, 2024: 100928.

    [5] [5] CAI H, CHEN F, HU C, et al. Oxygen vacancies mediated ultrathin Bi4O5Br2 nanosheets for efficient piezocatalytic peroxide hydrogen generation in pure water[J]. Chin J Catal, 2024, 57: 123–132.

    [6] [6] ZHU X L, WANG P, HUANG B B, et al. Synthesis of novel visible light response Ag10Si4O13 photocatalyst[J]. Appl Catal B Environ, 2016, 199: 315–322.

    [7] [7] LOU Z Z, HUANG B B, WANG Z Y, et al. Ag6Si2O7: A silicate photocatalyst for the visible region[J]. Chem Mater, 2014, 26(13): 3873–3875.

    [8] [8] AL-KEISY A, REN L, CUI D D, et al. A ferroelectric photocatalyst Ag10Si4O13 with visible-light photooxidation properties[J]. J Mater Chem A, 2016, 4(28): 10992–10999.

    [9] [9] LI C X, SUN H Z, JIN H Z, et al. Performance of ferroelectric visible light type II Ag10Si4O13/TiO2 heterojunction photocatalyst[J]. Catal Today, 2022, 400–401: 146–158.

    [10] [10] LI C X, KONG W H, JIN H Z, et al. Construction of 3D sponge-like hierarchical pore Ag10Si4O13 microblock photocatalyst with enhanced photocatalytic activities[J]. Colloids Surf A Physicochem Eng Aspects, 2022, 633: 127829.

    [11] [11] LI C X, ZHANG Y Y, JIN H Z, et al. Fabrication and visible-light photocatalytic properties of nano-Ag10Si4O13[J]. Ceram Int, 2021, 47(22): 32460–32465.

    [12] [12] FAN G D, CHEN C G, CHEN X L, et al. Enhancing the antifouling and rejection properties of PVDF membrane by Ag3PO4-GO modification[J]. Sci Total Environ, 2021, 801: 149611.

    [13] [13] SEYED DORRAJI M S, RASOULIFARD M H, AGHAMORADI Z, et al. The role of carbon-based nanosheets in enhancement of photocatalytic activity of Ag10Si4O13[J]. J Photochem Photobiol A Chem, 2020, 394: 112486.

    [15] [15] SIRANJEEVI R, VASUMATHI V, SUGANYA S, et al. Evaluation of biosynthesized GO@CeO2 nanocomposites as a catalyst for UV-assisted degradation of organic dyes and phytotoxicity studies[J]. Surf Interfaces, 2024, 44: 103748.

    [16] [16] WANG C, LIANG B Y, TIAN Z, et al. Simultaneous preparation of ZnO/rGO composites through Zn(OH)2 decomposition and graphite oxide reduction and their photocatalytic properties[J]. Environ Sci Pollut Res, 2024, 31(3): 4881–4896.

    [18] [18] KUCIO K, CHARMAS B, PASIECZNA-PATKOWSKA S, et al. Mechanochemical synthesis of nanophotocatalysts SiO2/TiO2/Fe2O3: Their structural, thermal and photocatalytic properties[J]. Appl Nanosci, 2020, 10(12): 4733–4746.

    [19] [19] TANG S Y, RAN J Y, GUO J J, et al. Preparation of highly stable and effective N-doped TiO2@SiO2 aerogel catalyst for degradation of organic pollutants by visible light catalysis[J]. J Chem, 2019, 2019(1): 8587949.

    [20] [20] LI Y X, LUAN P Q, ZHOU L Y, et al. Purification and immobilization of His-tagged organophosphohydrolase on yolk–shell Co/C@SiO2@Ni/C nanoparticles for cascade degradation and detection of organophosphates[J]. Biochem Eng J, 2021, 167: 107895.

    [21] [21] JIANG Q, HUANG J, MA B G, et al. Recyclable, hierarchical hollow photocatalyst TiO2@SiO2 composite microsphere realized by raspberry-like SiO2[J]. Colloids Surf A Physicochem Eng Aspects, 2020, 602: 125112.

    [22] [22] KAUR A, KAUR M, VYAS P. Precise tuning of SiO2 thickness in SiO2@Sr0.4Ti0.4Mg0.2Fe2O4.4 core–shell nanocomposites for augmenting photocatalytic and antibacterial activity[J]. ACS Sustainable Chem Eng, 2023, 11(43): 15577–15590.

    [23] [23] GABELICA I, URKOVI L, MANDI V, et al. Rapid microwave-assisted synthesis of Fe3O4/SiO2/TiO2 core-2-layer-shell nanocomposite for photocatalytic degradation of ciprofloxacin[J]. Catalysts, 2021, 11(10): 1136.

    [24] [24] HUI W T, DENG X H, ZHU Y F, et al. Insight for FeS2/MoS2 @SiO2 nanoreactor with spatial separation of H2O2 activation sites and pollutant adsorption sites: Enhanced H2O2 activation efficiency and pollutant degradation performance in Fenton reaction[J]. Colloids Surf A Physicochem Eng Aspects, 2023, 678: 132496.

    [26] [26] HASABELDAIM E H H, SWART H C, COETSEE E, et al. Degradation and chemical stability of graphitic carbon nitride during ultraviolet light irradiation[J]. Mater Chem Phys, 2023, 308: 128252.

    [27] [27] SHENOY M R, AYYASAMY S, REDDY M V V, et al. Preparation and characterization of porous iron oxide dendrites for photocatalytic application[J]. Solid State Sci, 2019, 95: 105939.

    [28] [28] WANG Y H, YU W Y, WANG C Y, et al. Defects in photoreduction reactions: Fundamentals, classification, and catalytic energy conversion[J]. eScience, 2024, 4(3): 100228.

    [29] [29] YAN X Q, ZHU X H, LI R H, et al. Au/BiOCl heterojunction within mesoporous silica shell as stable plasmonic photocatalyst for efficient organic pollutants decomposition under visible light[J]. J Hazard Mater, 2016, 303: 1–9.

    [30] [30] CHANNEI D, NAKARUK A, KHANITCHAIDECHA W, et al. Adsorption and photocatalytic processes of mesoporous SiO2-coated monoclinic BiVO4[J]. Front Chem, 2018, 6: 415.

    [31] [31] QIU L, LI H L, DAI F W, et al. Adsorption and photocatalytic degradation of benzene compounds on acidic F-TiO2/SiO2 catalyst[J]. Chemosphere, 2020, 246: 125698.

    [32] [32] WU Y T, DU X Z, KOU Y M, et al. Mesoporous SiO2 nanostructure: Light-induced adsorption enhancement and its application in photocatalytic degradation of organic dye[J]. Ceram Int, 2019, 45(18): 24594–24600.

    Tools

    Get Citation

    Copy Citation Text

    LI Cuixia, YUAN Bo, ZHANG Xin, WANG Anhang, ZHANG Youyou, JIN Haize, YANG Zhizhong. Stability and Mechanism of SiO2 Modified Ag10Si4O13/GO for Photocatalytic Degradation of Methylene Blue[J]. Journal of the Chinese Ceramic Society, 2025, 53(4): 839

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Special Issue:

    Received: Aug. 30, 2024

    Accepted: May. 29, 2025

    Published Online: May. 29, 2025

    The Author Email:

    DOI:10.14062/j.issn.0454-5648.20240571

    Topics