Journal of Applied Optics, Volume. 44, Issue 6, 1201(2023)
Numerical simulation of thermal effects in high-power diamond Raman lasers
[1] JAUREGUI C, LIMPERT J, TUNNERMANN A. High-power fibre lasers[J]. Nature Photonics, 7, 861-867(2013).
[2] DING Yu, JIANG Feng, ZHENG Rongshan et al. Overview of high energy laser weapon development in USA (invited)[J]. Electro-Optic Technology Application, 36, 1-9(2021).
[3] ZHU Mengzhen, CHEN Xia, LIU Xu et al. Situation and key technology of tactical laser anti-UAV[J]. Infrared and Laser Engineering, 50, 20200230(2021).
[4] ZHOU Pu, YAO Tianfu, FAN Chenchen et al. 50th anniversary of Raman fiber laser: history, progress and prospect (invited)[J]. Infrared and Laser Engineering, 51, 20220015(2022).
[5] SUPRADEEPA V R, FENG Y, NICHOLSON J W. Raman fiber lasers[J]. Journal of Optics, 19, 023001(2017).
[6] HUO X W, QI Y Y, ZHANG Y et al. Research development of 589 nm laser for sodium laser guide stars[J]. Optics and Lasers in Engineering, 134, 106207(2020).
[7] BAI Zhenxu, CHEN Hui, LI Yuqi et al. Development of beam brightness enhancement based on diamond Raman conversion[J]. Infrared and Laser Engineering, 50, 20200098(2021).
[8] ZHANG Yakai, CHEN Hui, BAI Zhenxu et al. Multi-wavelength red diamond Raman laser[J]. Infrared and Laser Engineering, 52, 20230329(2023).
[9] BAI Zhenxu, YANG Xuezong, CHEN Hui et al. Research progress of high-power diamond laser technology (invited)[J]. Infrared and Laser Engineering, 49, 20201076(2020).
[10] WILLIAMS R J, KITZLER O, BAI Z X et al. High power diamond Raman lasers[J]. IEEE Journal of Selected Topics in Quantum Electronics, 24, 1602214(2018).
[11] JASBEER H, WILLIAMS R J, KITZLER O et al. Wavelength diversification of high-power external cavity diamond Raman lasers using intracavity harmonic generation[J]. Optics Express, 26, 1930-1941(2018).
[12] SARANG S, RICHARDSON M. Power scaling of CW crystalline OPOs and Raman lasers[J]. Photonics, 8, 565-571(2021).
[13] BAI Zhenxu, CHEN Hui, ZHANG Zhanpeng et al. Hundred-watt dual-wavelength diamond Raman laser at 1.2/1.5 μm (invited)[J]. Infrared and Laser Engineering, 50, 20210685(2021).
[14] ANTIPOV S, SABELLA A, WILLIAMS R J et al. 1.2 kW quasi-steady-state diamond Raman laser pumped by an M2 = 15 beam[J]. Optics Letters, 44, 2506-2509(2019).
[15] BAI Z X, WILLIAMS R J, KITZLER O et al. 302 W quasi-continuous cascaded diamond Raman laser at 15 microns with large brightness enhancement[J]. Optics Express, 26, 19797-19803(2018).
[16] YANG X Z, KITZLER O, SPENCE D J et al. Diamond sodium guide star laser[J]. Optics Letters, 45, 1898-1901(2020).
[17] BAI Z X, WILLIAMS R J, JASBEER H et al. Large brightness enhancement for quasi-continuous beams by diamond Raman laser conversion[J]. Optics Letters, 43, 563-566(2018).
[18] BAI Zhenxu, CHEN Hui, DING Jie et al. High-power Brillouin frequency comb based on free-space optical cavity[J]. Chinese Journal of Lasers, 49, 0415001(2022).
[19] CHEN H, BAI Z X, CAI Y P et al. Order controllable enhanced stimulated Brillouin scattering utilizing cascaded diamond Raman conversion[J]. Applied Physics Letters, 122, 092202(2023).
[20] WILLIAMS R J, NOLD J, STRECKER M et al. Efficient Raman frequency conversion of high-power fiber lasers in diamond[J]. Laser & Photonics Reviews, 9, 405-411(2015).
[21] PASHININ V P, RALCHENKO V G, BOLSHAKOV A P et al. External-cavity diamond Raman laser performance at 1 240 nm and 1 485 nm wavelengths with high pulse energy[J]. Laser Physics Letters, 13, 065001(2016).
[22] ANTIPOV S, WILLIAMS R J, SABELLA A et al. Analysis of a thermal lens in a diamond Raman laser operating at 1.1 kW output power[J]. Optics Express, 28, 15232-15239(2020).
[23] MILDREN R, RABEAU J[M]. Optical engineering of diamond, 353-384(2013).
[24] MCKAY A, LIU H, KITZLER O et al. An efficient 14.5 W diamond Raman laser at high pulse repetition rate with first (1 240 nm) and second (1 485 nm) Stokes output[J]. Laser Physics Letters, 10, 105801(2013).
[25] LI Y L, DING J, BAI Z X et al. Diamond Raman laser: a promising high-beam-quality and low-thermal-effect laser[J]. High Power Laser Science and Engineering, 9, e35(2021).
[26] BAI Z X, ZHANG Z P, WANG K et al. Comprehensive thermal analysis of diamond in a high-power Raman cavity based on FVM-FEM coupled method[J]. Nanomaterials, 11, 1572-1579(2021).
[27] GONG Q X, ZHANG M X, LIN C N et al. Analysis of thermal effects in kilowatt high power diamond Raman lasers[J]. Crystals, 12, 1824(2022).
[28] FROMZEL V, TER-GABRIELYAN N, DUBINSKII M. Efficient resonantly-clad-pumped laser based on a Er: YAG-core planar waveguide[J]. Optics Express, 26, 3932-3937(2018).
[29] LIU J, WU J D, CHEN H L et al. Short-pulsed Raman fiber laser and its dynamics[J]. Science China Physics, Mechanics & Astronomy, 64, 1-21(2020).
[30] YU W L, YAN P, XIAO Q R et al. Power scalability of a continuous-wave high-power Er-Yb co-doped fiber amplifier pumped by Yb-doped fiber lasers[J]. Applied Optics, 60, 2046-2055(2021).
[31] WANG Q C, LONG Q L, GAO Y A et al. High-efficiency Ho:YLF slab laser with 125 W continuous-wave output power[J]. Applied Optics, 60, 8046-8049(2021).
[32] MI S, LI J, WEI D et al. 105 W continuous-wave diode-pumped Tm:YAP slab laser with high beam quality[J]. Optics & Laser Technology, 138, 106847(2021).
[33] NAGEL S, METZGER B, BAUER D et al. Thin-disk laser system operating above 10 kW at near fundamental mode beam quality[J]. Optics Letters, 46, 965-968(2021).
[34] AHMED M A, BEIROW F, LOESCHER A et al. High-power thin-disk lasers emitting beams with axially symmetric polarizations[J]. Nanophotonics, 11, 835-846(2022).
[35] TU H, MA S H, HU Z G et al. Efficient monolithic diamond Raman yellow laser at 572.5 nm[J]. Optical Materials, 114, 110912(2021).
[36] YAO Q Q, DONG Y, WANG Q et al. Beam quality improvement by controlling thermal lens spherical aberration in an end-pumped Nd:YVO4 laser[J]. Applied Optics, 57, 2245-2249(2018).
[37] RAMESH K N, SHARMA T K, RAO G A P. Latest advancements in heat transfer enhancement in the micro-channel heat sinks: a review[J]. Archives of Computational Methods in Engineering, 28, 3135-3165(2021).
[38] KIM K J, HAN B, BAR-COHEN A. Thermal and optical performance of cryogenically cooled laser diode bars mounted on pin-finned microcoolers[J]. Applied Physics B, 127, 1-9(2021).
[39] FANG J Y, ZHANG H, ZOU Y G et al. Thermal management of a semiconductor laser array based on a graphite heat sink[J]. Applied Optics, 58, 7708-7715(2019).
[40] DING J, LI Y L, CHEN H et al. Thermal modeling of an external cavity diamond Raman laser[J]. Optics & Laser Technology, 156, 108578(2022).
[41] ZHANG H, WEN Y, ZHANG L et al. Influences of pump spot radius and depth of focus on the thermal effect of Tm:YAP crystal[J]. Current Optics and Photonics, 3, 458-465(2019).
Get Citation
Copy Citation Text
Fei ZHANG, Hao ZHENG, Pengfei LI, Hui CHEN, Jie DING, Yaoyao QI, Bingzheng YAN, Yulei WANG, Zhiwei LYU, Zhenxu BAI. Numerical simulation of thermal effects in high-power diamond Raman lasers[J]. Journal of Applied Optics, 2023, 44(6): 1201
Category: Research Articles
Received: Jul. 14, 2023
Accepted: --
Published Online: Mar. 12, 2024
The Author Email: Zhenxu BAI (白振旭)