Infrared and Laser Engineering, Volume. 50, Issue 7, 20211048(2021)
Frontiers and prospects of integrated microwave photonics (Invited)
[1] Yao J. Microwave photonics[J]. J Lightwave Technol, 27, 314-335(2009).
[2] Liu C, Wang J, Cheng L, et al. Key microwave-photonics technologies for next-generation cloud-based radio access networks[J]. J Lightwave Technol, 32, 3452-3460(2014).
[3] Ghelfi P, Laghezza F, Scotti F, et al. A fully photonics-based coherent radar system[J]. Nature, 507, 341-345(2014).
[4] Ghelfi P, Scotti F, Onori D, et al. Photonics for ultrawideband RF spectral analysis in electronic warfare applications[J]. IEEE J Sel Top Quant Electron, 25, 1-9(2019).
[5] Wang X, Liu Z, Wang S, et al. Photonic radio-frequency dissemination via optical fiber with high-phase stability[J]. Opt Lett, 40, 2618-2621(2015).
[6] Serafino G, Porzi C, Hussain B, et al. High-performance beamforming network based on Si-photonics phase shifters for wideband communications and radar applications[J]. IEEE J Sel Top Quant Electron, 26, 6101011(2020).
[7] Maleki L. The optoelectronic oscillator[J]. Nature Photon, 5, 728-730(2011).
[8] Yao J. Arbitrary waveform generation[J]. Nature Photon, 4, 79-80(2010).
[9] Willner A E, Khaleghi S, Chitgarha M R, et al. All-optical signal processing[J]. J Lightwave Technol, 32, 660-680(2013).
[10] de Chatellus H, Cortés L, Azaña J. Optical real-time Fourier transformation with kilohertz resolutions[J]. Optica, 3, 1-8(2016).
[11] Marpaung D, Roeloffzen C, Heideman R et al. Integrated microwave photonics[J]. Lasers Photon Rev, 7, 506-538(2013).
[12] Xiang C, Morton P A, Bowers J E. Ultra-narrow linewidth laser based on a semiconductor gain chip and extended Si3N4 Bragg grating[J]. Opt Lett, 44, 3825-3828(2019).
[13] Lin Y, Lee K H, Bao S, et al. High-efficiency normal-incidence vertical P-I-N photodetectors on a germanium-on-insulator platform[J]. Photonics Res, 5, 702-709(2017).
[14] Haffner C, Chelladurai D, Fedoryshyn Y, et al. Low-loss plasmon-assisted electro-optic modulator[J]. Nature, 556, 483-486(2018).
[15] Eggleton B J, Poulton C, Rakich P, et al. Brillouin integrated photonics[J]. Nat Photonics, 13, 664-677(2019).
[16] Marpaung D, Yao J, Capmany J. Integrated microwave photonics[J]. Nat Photonics, 13, 80-90(2019).
[17] Pérez D, Gasulla I, Capmany J. Toward programmable microwave photonics processors[J]. IEEE J Lightwave Technol, 36, 519-532(2018).
[18] [18] EMCE. CATV Lasers & Components [EBOL]. [20210401]. https:emce.comproductcategyfiberopticlasersreceiversphotodiodescatvlaserscomponents#products_main_ct.
[19] [19] APIC Cpation. Analog CW Lasers [EBOL]. [20210401]. https:www.apichip.combuyourultralownoisehighpowerlaserstoday.
[20] [20] Litece. High power 1550nm DFB Laser [EBOL]. [20210401]. http:www.litece.com.cn#productdetail0000000021.
[21] Burla M, Hoessbacher C, Heni W, et al. 500 GHz plasmonic Mach-Zehnder modulator enabling sub-THz microwave photonics[J]. APL Photonics, 4, 56106(2019).
[22] [22] iXblue Photonics. MachZehder modulats [EBOL]. [20210401]. https:photonics.ixblue.comstelithiumniobateelectroopticmodulatintensitymodulats.
[23] He M, Xu M, Ren Y, et al. High-performance hybrid silicon and lithium niobate Mach–Zehnder modulators for 100 Gbit s−1 and beyond[J]. Nat Photonics, 13, 359-364(2019).
[24] Zhang C, Morton P A, Khurgin K B, et al. Ultralinear heterogeneously integrated ring-assisted Mach–Zehnder interferometer modulator on silicon[J]. Optica, 3, 1483-1487(2016).
[25] Zhou Y, Zhou L, Wang M, et al. Linearity characterization of a dual–parallel silicon Mach–Zehnder modulator[J]. IEEE Photonics Journal, 8, 7805108(2016).
[26] Bottenfield C G, Thomas V A, Ralph S E. Silicon photonic modulator linearity and optimization for microwave photonic links[J]. IEEE J Sel Top Quant, 25, 3400110(2019).
[27] [27] IIVI Incpated. 70 GHz Highspeed Photodetect [EBOL]. [20210401]. https:iivi.comproduct70ghzhighspeedphotodetect.
[28] [28] Li Q. Waveguideintegrated highspeed highpower photodiode with 105 GHz bwidth[C]2017 IEEE Photonics Conference (IPC), 2017: 4950.
[29] Sun K, Beling A. High-speed photodetectors for microwave photonics[J]. Applied Sciences, 9, 623(2019).
[30] [30] Sun K, Costanzo R, Tzu T, et al. GeonSi waveguide photodiode array f highpower applications [C]IEEE Photonics Conference 2018, IEEE, 2018: MB2.3.
[31] [31] Liu Y, Isaac B, Kalkavage J, et al. 93GHz signal beam steering with true time delayed integrated optical beamfming wk[C]Optical Fiber Communication Conference 2019, OSA, 2019: Th1C. 5.
[32] Hu G, Cui Y, Yang Y, et al. Optical beamformer based on diffraction order multiplexing (DOM) of an arrayed waveguide grating[J]. J Lightwave Technol, 37, 2898-2904(2019).
[33] Zhu C, Lu L, Shan W, et al. A silicon integrated microwave photonic beamformer[J]. Optica, 7, 1162-1170(2020).
[34] Burla M, Marpaung D, Zhuang L, et al. Multiwavelength-integrated optical beamformer based on wavelength division multiplexing for 2-D phased array antennas[J]. J Lightwave Technol, 32, 3509-3520(2014).
[35] Liu Y, Wichman A, Isaac B, et al. Tuning optimization of ring resonator delays for integrated optical beam forming networks[J]. J Lightwave Technol, 35, 4954-4960(2017).
[36] Choo G, Madsen C, Palermo S, et al. Automatic monitor-based tuning of an RF silicon photonic 1×4 asymmetric binary tree true-time-delay beamforming network[J]. J Lightwave Technol, 36, 5263-5275(2018).
[37] Yu H, Chen M, Guo Q, et al. All-optical full-band RF receiver based on an integrated ultra-high-Q bandpass filter[J]. J Lightwave Technol, 34, 701-706(2016).
[38] Marpaung D, Morrison B, Pagani M, et al. Low-power, chip-based stimulated Brillouin scattering microwave photonic filter with ultrahigh selectivity[J]. Optica, 2, 76-83(2015).
[39] Jiang H, Yan L, Marpaung D. Chip-based arbitrary radio-frequency photonic filter with algorithm-driven reconfigurable resolution[J]. Opt Lett, 43, 415-418(2018).
[40] [40] Zhang W, Yao J. A silicon photonic integrated frequencytunable microwave photonic bpass filter[C]2017 International Topical Meeting on Microwave Photonics (MWP), 2017: 17398281.
[41] Fandiño J, Muñoz P, Doménech D, et al. A monolithic integrated photonic microwave filter[J]. Nat Photonics, 11, 124-129(2017).
[42] Tang J, Hao T, Li W, et al. Integrated optoelectronic oscillator[J]. Opt Express, 26, 12257-12265(2018).
[43] Zhang W, Yao J. Silicon photonic integrated optoelectronic oscillator for frequency tunable microwave generation[J]. J Lightwave Technol, 36, 4655-4663(2018).
[44] Wang J, Shen H, Fan L, et al. Reconfigurable radio-frequency arbitrary waveforms synthesized in a silicon photonic chip[J]. Nat Commun, 6, 5957(2015).
[45] Zhang W, Yao J. Silicon-based on-chip electrically-tunable spectral shaper for continuously tunable linearly chirped microwave waveform generation[J]. J Lightwave Technol, 34, 4664-4672(2016).
[46] Jin S, Xu L, Rosborough V, et al. RF frequency mixer photonic integrated circuit[J]. IEEE Photonic Tech Lett, 28, 1771-1773(2016).
[47] Bottenfield C, Ralph S. High-performance fully integrated silicon photonic microwave mixer subsystems[J]. J Lightwave Technol, 38, 5536-5545(2020).
[48] Khilo A, Spector S, Grein M, et al. Photonic ADC: overcoming the bottleneck of electronic jitter[J]. Opt Express, 20, 4454-4469(2012).
[49] Yang G, Zou W, Yu L, et al. Compensation of multi-channel mismatches in high-speed high-resolution photonic analog-to-digital converter[J]. Opt Express, 24, 24061-24074(2016).
[50] Qian N, Yu L, Chen J, et al. Influence of the demultiplexer on channel-interleaved photonic analog-to-digital converters[J]. IEEE Photon J, 12, 1-10(2020).
[51] Xu S, Zou X, Ma B, et al. Deep-learning-powered photonic analog-to-digital conversion[J]. Light Sci Appl, 8, 66(2019).
[52] Pérez D, Gasulla I, Crudgington L, et al. Multipurpose silicon photonics signal processor core[J]. Nat Commun, 8, 636(2017).
[53] Zhang W, Yao J. Photonic integrated field-programmable disk array signal processor[J]. Nat Commun, 11, 406(2020).
[57] Xu M, He M, Zhang H, et al. High-performance coherent optical modulators based on thin-film lithium niobate platform[J]. Nat Commun, 11, 1-7(2020).
[59] Lim C, Tian Y, Ranaweera C, et al. Evolution of radio-over-fiber technology[J]. J Lightwave Technol, 37, 1647-1656(2019).
[60] Zou X, Bai W, Chen W, et al. Microwave photonics for featured applications in high-speed railways: communications, detection, and sensing[J]. J Lightwave Technol, 36, 4337-4346(2018).
[61] Pan S, Zhu D, Liu S, et al. Satellite payloads pay off[J]. IEEE Microwave Magazine, 16, 61-73(2015).
[62] Li R, Li W, Ding M, et al. Demonstration of a wideband microwave photonic synthetic aperture radar based on photonic-assisted signal generation and stretch processing[J]. Opt Express, 25, 14334-14340(2017).
[63] Xu S, Zou W, Yang G, et al. Ultra-high range resolution demonstration of a photonics-based microwave radar using a high-repetition-rate mode-locked fiber laser[J]. Chin Opt Lett, 16, 062801(2018).
[64] Zhang A, Dai Y, Yin F, et al. Phase stabilized downlink transmission for wideband radio frequency signal via optical fiber link[J]. Opt Express, 22, 21560-21566(2014).
[65] Pan S, Zhang Y. Microwave photonic radars[J]. IEEE J Lightwave Technol, 38, 5450-5484(2020).
[66] Yi X, Chew S X, Song S, et al. Integrated microwave photonics for wideband signal processing[J]. Photonics, 4, 46-49(2017).
[67] Hao T, Tang J, Domenech D, et al. Toward monolithic integration of OEOs: From systems to chips[J]. IEEE J Lightwave Technol, 36, 19, 4565-4582(2018).
[68] Xiang Y, Li G, Pan S. Ultrawideband optical cancellation of RF interference with phase change[J]. Opt Express, 25, 21259-21264(2017).
[69] Liu S, Khope A. Latest advances in high-performance light sources and optical amplifiers on silicon[J]. J Semicond, 42, 041307(2021).
[70] Guo X, He A, Su Y. Recent advances of heterogeneously integrated III–V laser on Si[J]. J Semicond, 40, -101304(2019).
[71] Shiu R K, Chen Y, Peng P, et al. Performance enhancement of optical comb based microwave photonic filter by machine learning technique[J]. IEEE J Lightwave Technol, 38, 5302-5310(2020).
Get Citation
Copy Citation Text
Ming Li, Tengfei Hao, Shilong Pan, Xihua Zou, Binfeng Yun, Weiwen Zou, Wei Li, Lianshan Yan. Frontiers and prospects of integrated microwave photonics (Invited)[J]. Infrared and Laser Engineering, 2021, 50(7): 20211048
Category: Research Articles
Received: Apr. 3, 2021
Accepted: --
Published Online: Aug. 23, 2021
The Author Email: