International Journal of Extreme Manufacturing, Volume. 7, Issue 2, 22012(2025)

Flexible nanogenerators for intelligent robotics: design, manufacturing, and applications

Zhao Hongfa, Ruan Liguang, Wang Zihan, Shu Mingrui, Lyu Chuqiao, Lakshan Bulathsinghala Rameesh, Ishara Dharmasena, Wu Changsheng, and Ding Wenbo
References(250)

[1] [1] Billard A and Kragic D 2019 Trends and challenges in robot manipulationScience364eaat8414

[2] [2] Wang T Y, Pierce C, Kojouharov V, Chong B X, Diaz K, Lu H and Goldman D I 2023 Mechanical intelligence simplifies control in terrestrial limbless locomotionSci. Robot.8eadi2243

[3] [3] Pan M, Yuan C G, Liang X R, Zou J, Zhang Y and Bowen C 2020 Triboelectric and piezoelectric nanogenerators for future soft robots and machinesiScience23101682

[4] [4] Qu X C, Yang Z, Cheng J, Li Z and Ji L H 2023 Development and application of nanogenerators in humanoid roboticsNano Trends3100013

[5] [5] Shih B, Shah D, Li J X, Thuruthel T G, Park Y L, Iida F, Bao Z N, Kramer-Bottiglio R and Tolley M T 2020 Electronic skins and machine learning for intelligent soft robotsSci. Robot.5eaaz9239

[6] [6] Long Y H, Wei W, Huang T, Wang Y H and Dou Q 2023 Human-in-the-loop embodied intelligence with interactive simulation environment for surgical robot learningIEEE Robot. Autom. Lett.84441–8

[7] [7] Zador Aet al2023 Catalyzing next-generation artificial intelligence through NeuroAINat. Commun.141597

[8] [8] Zhang S, Zhang B S, Zhao D, Gao Q, Wang Z L and Cheng T H 2022 Nondestructive dimension sorting by soft robotic grippers integrated with triboelectric sensorACS Nano163008–16

[9] [9] Zhang C, Liu S Y, Huang X, Guo W, Li Y Y and Wu H 2019 A stretchable dual-mode sensor array for multifunctional robotic electronic skinNano Energy62164–70

[10] [10] Chen T, Shi Q F, Zhu M L, He T Y Y, Sun L N, Yang L and Lee C 2018 Triboelectric self-powered wearable flexible patch as 3D motion control interface for robotic manipulatorACS Nano1211561–71

[11] [11] Zhou Y K, Shen M L, Cui X, Shao Y C, Li L J and Zhang Y 2021 Triboelectric nanogenerator based self-powered sensor for artificial intelligenceNano Energy84105887

[12] [12] Ma S Cet al2022 Neuromorphic computing chip with spatiotemporal elasticity for multi-intelligent-tasking robotsSci. Robot.7eabk2948

[13] [13] Wen F, Sun Z D, He T Y Y, Shi Q F, Zhu M L, Zhang Z X, Li L H, Zhang T and Lee C 2020 Machine learning glove using self-powered conductive superhydrophobic triboelectric textile for gesture recognition in VR/AR applicationsAdv. Sci.72000261

[14] [14] Liu Y Z, Yue S Z, Tian Z Y, Zhu Z J, Li Y J, Chen X Y, Wang Z L, Yu Z Z and Yang D 2024 Self-powered and self-healable extraocular-muscle-like actuator based on dielectric elastomer actuator and triboelectric nanogeneratorAdv. Mater.362309893

[15] [15] Luo Y L, Sun J F, Zeng Q X, Zhang X F, Tan L M, Chen A, Guo H Y and Wang X 2023 Programmable tactile feedback system for blindness assistance based on triboelectric nanogenerator and self-excited electrostatic actuatorNano Energy111108425

[16] [16] Zheng Z P, Wang B Q, Yin H, Chen Y J, Bao Y and Guo Y P 2023 Self-powered piezoelectric actuation systems based on triboelectric nanogeneratorAdv. Funct. Mater.332302648

[17] [17] Kim S R, Lee S and Park J W 2022 A skin-inspired, self-powered tactile sensorNano Energy101107608

[18] [18] Chun S, Son W, Kim H, Lim S K, Pang C and Choi C 2019 Self-powered pressure-and vibration-sensitive tactile sensors for learning technique-based neural finger skinNano Lett.193305–12

[19] [19] Hajra S, Sahu M, Padhan A M, Swain J, Panigrahi B K, Kim H G, Bang S W, Park S, Sahu R and Kim H J 2021 A new insight into the ZIF-67 based triboelectric nanogenerator for self-powered robot object recognitionJ. Mater. Chem.C917319–30

[20] [20] Lin Y C, Duan S S, Zhu D, Li Y H, Wang B H and Wu J 2023 Self-powered and interface-independent tactile sensors based on bilayer single-electrode triboelectric nanogenerators for robotic electronic skinAdv. Intell. Syst.52100120

[21] [21] Shi Q F and Lee C 2019 Self-powered bio-inspired spider-net-coding interface using single-electrode triboelectric nanogeneratorAdv. Sci.61900617

[22] [22] Han J Het al2018 Machine learning-based self-powered acoustic sensor for speaker recognitionNano Energy53658–65

[23] [23] Yun S Y, Han J K, Lee S W, Yu J M, Jeon S B and Choi Y K 2023 Self-aware artificial auditory neuron with a triboelectric sensor for spike-based neuromorphic hardwareNano Energy109108322

[24] [24] Liu Y D, Zhu Y X, Liu J Y, Zhang Y, Liu J and Zhai J Y 2018 Design of bionic cochlear basilar membrane acoustic sensor for frequency selectivity based on film triboelectric nanogeneratorNanoscale Res. Lett.13191

[25] [25] Zhu J X, Sun Z D, Xu J K, Walczak R D, Dziuban J A and Lee C 2021 Volatile organic compounds sensing based on Bennet doubler-inspired triboelectric nanogenerator and machine learning-assisted ion mobility analysisSci. Bull.661176–85

[26] [26] He H X, Dong C Y, Fu Y M, Han W X, Zhao T M, Xing L L and Xue X Y 2018 Self-powered smelling electronic-skin based on the piezo-gas-sensor matrix for real-time monitoring the mining environmentSens. ActuatorsB267392–402

[27] [27] Kim C, Kang M S, Raja I S, Oh J W, Joung Y K and Han D W 2024 Current issues and perspectives in nanosensors-based artificial olfactory systems for breath diagnostics and environmental exposure monitoringTrends Analyt Chem174117656

[28] [28] Wei X L, Wang B C, Cao X L, Zhou H L, Wu Z Y and Wang Z L 2023 Dual-sensory fusion self-powered triboelectric taste-sensing system towards effective and low-cost liquid identificationNat. Food4721–32

[29] [29] Kim J H, Chun J, Kim J W, Choi W J and Baik J M 2015 Self-powered, room-temperature electronic nose based on triboelectrification and heterogeneous catalytic reactionAdv. Funct. Mater.257049–55

[30] [30] Wang Z M, An J, Nie J H, Luo J J, Shao J J, Jiang T, Chen B D, Tang W and Wang Z L 2020 A self-powered angle sensor at nanoradian-resolution for robotic arms and personalized medicareAdv. Mater.322001466

[31] [31] Zhu M Z, Xie M Y, Lu X M, Okada S and Kawamura S 2020 A soft robotic finger with self-powered triboelectric curvature sensor based on multi-material 3D printingNano Energy73104772

[32] [32] Hou X Y, Zhu M L, Sun L N, Ding T X, Huang Z Y, Shi Y T, Su Y L, Li L, Chen T and Lee C 2022 Scalable self-attaching/assembling robotic cluster (S2A2RC) system enabled by triboelectric sensors for in-orbit spacecraft applicationNano Energy93106894

[33] [33] Wang Z H, Zhang F D, Yao T, Li N, Li X and Shang J F 2020 Self-powered non-contact triboelectric rotation sensor with interdigitated filmSensors204947

[34] [34] Chen S E, Pang Y K, Yuan H Y, Tan X B and Cao C Y 2020 Smart soft actuators and grippers enabled by self-powered tribo-skinsAdv. Mater. Technol.51901075

[35] [35] Wen F, Zhang Z X, He T Y Y and Lee C 2021 AI enabled sign language recognition and VR space bidirectional communication using triboelectric smart gloveNat. Commun.125378

[36] [36] Zhu M L, Sun Z D, Zhang Z X, Shi Q F, He T Y Y, Liu H C, Chen T and Lee C 2020 Haptic-feedback smart glove as a creative human-machine interface (HMI) for virtual/augmented reality applicationsSci. Adv.6eaaz8693

[37] [37] Daz Ledezma F and Haddadin S 2023 Machine learning–driven self-discovery of the robot body morphologySci. Robot.8eadh0972

[38] [38] Zhang H, Zhang D Z, Wang Z H, Xi G S, Mao R Y, Ma Y H, Wang D Y, Tang M C, Xu Z Y and Luan H X 2023 Ultrastretchable, self-healing conductive hydrogel-based triboelectric nanogenerators for human–computer interactionACS Appl. Mater. Interfaces155128–38

[39] [39] Gao L Xet al2022 A high performance triboelectric nanogenerator based on ordered doping technique for human-machine interaction sensingNano Energy95107025

[40] [40] Doganay D, Cicek M O, Durukan M B, Altuntas B, Agbahca E, Coskun S and Unalan H E 2021 Fabric based wearable triboelectric nanogenerators for human machine interfaceNano Energy89106412

[41] [41] Sun Q Zet al2021 Fully sustainable and high-performance fish gelatin-based triboelectric nanogenerator for wearable movement sensing and human-machine interactionNano Energy89106329

[42] [42] Hajra S, Panda S, Khanberh H, Vivekananthan V, Chamanehpour E, Mishra Y K and Kim H J 2023 Revolutionizing self-powered robotic systems with triboelectric nanogeneratorsNano Energy115108729

[43] [43] Ye G M, Wan Y F, Wu J M, Zhuang W B, Zhou Z Q, Jin T S, Zi J Y, Zhang D D, Geng X M and Yang P 2022 Multifunctional device integrating dual-temperature regulator for outdoor personal thermal comfort and triboelectric nanogenerator for self-powered human-machine interactionNano Energy97107148

[44] [44] Jiao P C 2021 Emerging artificial intelligence in piezoelectric and triboelectric nanogeneratorsNano Energy88106227

[45] [45] Han Z C, Jiao P C and Zhu Z Y 2021 Combination of piezoelectric and triboelectric devices for robotic self-powered sensorsMicromachines12813

[46] [46] Wang Z L 2020 Triboelectric nanogenerator (TENG)—sparking an energy and sensor revolutionAdv. Energy Mater.102000137

[47] [47] Luo J J, Gao W C and Wang Z L 2021 The triboelectric nanogenerator as an innovative technology toward intelligent sportsAdv. Mater.332004178

[48] [48] Zhao H Fet al2022 A highly sensitive triboelectric vibration sensor for machinery condition monitoring (Adv. Energy Mater.37/2022)Adv. Energy Mater.122270154

[49] [49] Gu L, Liu J M, Cui N Y, Xu Q, Du T, Zhang L, Wang Z, Long C B and Qin Y 2020 Enhancing the current density of a piezoelectric nanogenerator using a three-dimensional intercalation electrodeNat. Commun.111030

[50] [50] Cao X L, Xiong Y, Sun J, Zhu X X, Sun Q J and Wang Z L 2021 Piezoelectric nanogenerators derived self-powered sensors for multifunctional applications and artificial intelligenceAdv. Funct. Mater.312102983

[51] [51] Liu H Z, Zhang G H, Zheng X, Chen F J and Duan H G 2020 Emerging miniaturized energy storage devices for microsystem applications: from design to integrationInt. J. Extrem. Manuf.2042001

[52] [52] Persano L, Dagdeviren C, Su Y W, Zhang Y H, Girardo S, Pisignano D, Huang Y G and Rogers J A 2013 High performance piezoelectric devices based on aligned arrays of nanofibers of poly (vinylidenefluoride-co-trifluoroethylene)Nat. Commun.41633

[53] [53] Shanbedi M, Ardebili H and Karim A 2023 Polymer-based triboelectric nanogenerators: materials, characterization, and applicationsProg. Polym. Sci.144101723

[54] [54] Huang L B, Xu W, Tian W, Han J C, Zhao C H, Wu H L and Hao J H 2020 Ultrasonic-assisted ultrafast fabrication of polymer nanowires for high performance triboelectric nanogeneratorsNano Energy71104593

[55] [55] Niu X Set al2019 High-performance PZT-based stretchable piezoelectric nanogeneratorACS Sustain. Chem. Eng.7979–85

[56] [56] Abbasipour M, Khajavi R and Akbarzadeh A H 2022 A comprehensive review on piezoelectric polymeric and ceramic nanogeneratorsAdv. Eng. Mater.242101312

[57] [57] Zhang P, Zhang W K, Deng L and Zhang H H 2021 A triboelectric nanogenerator based on temperature-stable high dielectric BaTiO3-based ceramic powder for energy harvestingNano Energy87106176

[58] [58] Hwang G Tet al2014 Self-powered cardiac pacemaker enabled by flexible single crystalline PMN-PT piezoelectric energy harvesterAdv. Mater.264880–7

[59] [59] Yang Y Qet al2018 Liquid-metal-based super-stretchable and structure-designable triboelectric nanogenerator for wearable electronicsACS Nano122027–34

[60] [60] Zhang Z, Jiang D D, Zhao J Q, Liu G X, Bu T Z, Zhang C and Wang Z L 2020 Tribovoltaic effect on metal–semiconductor interface for direct-current low-impedance triboelectric nanogeneratorsAdv. Energy Mater.101903713

[61] [61] Ghosh S K and Mandal D 2016 Efficient natural piezoelectric nanogenerator: electricity generation from fish swim bladderNano Energy28356–65

[62] [62] Kaur J, Sawhney R S, Singh H, Singh M and Godara S K 2021 Scavenging mechanical energy from human motions using novel-biomaterial-based triboelectric nanogeneratorPhys. Status Solidia2182100161

[63] [63] Huang J J, Jiang T, Zhang Z F, Zhang W Q, Wang S L, Chen Z M, Wan J J, Li P, Li H L and Gui C M 2023 Fabrication of biomaterial-based triboelectric nanogenerators: study of the relationship between output performance and strain in dielectric materialsACS Sustain. Chem. Eng.119540–52

[64] [64] Habib M, Lantgios I and Hornbostel K 2022 A review of ceramic, polymer and composite piezoelectric materialsJ. Appl. Phys.55423002

[65] [65] Sun R X, Gao L X, Shou M J, Li B, Chen X, Wang F Y, Mu X J, Xie L and Liao C R 2020 Tribo-material based on a magnetic polymeric composite for enhancing the performance of triboelectric nanogeneratorNano Energy78105402

[66] [66] Wang Z H, Lei K C, Tang H Z, Luo Y, Zhao H F, He P S, Ding W B and Lin L W 2024 Stretchable liquid metal e-skin for soft robot proprioceptive vibration sensingIEEE Sens. J.2418327–35

[67] [67] Zhao H F, Xiao X, Xu P, Zhao T C, Song L G, Pan X X, Mi J C, Xu M Y and Wang Z L 2019 Dual-tube Helmholtz resonator-based triboelectric nanogenerator for highly efficient harvesting of acoustic energyAdv. Energy Mater.91902824

[68] [68] Wan H C, Cao Y Q, Lo L W, Xu Z H, Seplveda N and Wang C 2019 Screen-printed soft triboelectric nanogenerator with porous PDMS and stretchable PEDOT: PSS electrodeJ. Semicond.40112601

[69] [69] Gu G Q, Han C B, Lu C X, He C, Jiang T, Gao Z L, Li C J and Wang Z L 2017 Triboelectric nanogenerator enhanced nanofiber air filters for efficient particulate matter removalACS Nano116211–7

[70] [70] Gao Y Y, Li Z H, Xu B G, Li M Q, Jiang C H Z, Guan X Y and Yang Y J 2022 Scalable core–spun coating yarn-based triboelectric nanogenerators with hierarchical structure for wearable energy harvesting and sensing via continuous manufacturingNano Energy91106672

[71] [71] Pyo S, Kim M O, Kwon D S, Kim W, Yang J H, Cho H S, Lee J H and Kim J 2020 All-textile wearable triboelectric nanogenerator using pile-embroidered fibers for enhancing output powerSmart Mater. Struct.29055026

[72] [72] Li T, Feng Z Q, Qu M H, Yan K, Yuan T, Gao B B, Wang T, Dong W and Zheng J 2019 Core/shell piezoelectric nanofibers with spatial self-orientated -phase nanocrystals for real-time micropressure monitoring of cardiovascular wallsACS Nano1310062–73

[73] [73] Chen H Y, Zhou L L, Fang Z, Wang S Z, Yang T, Zhu L P, Hou X M, Wang H L and Wang Z L 2021 Piezoelectric nanogenerator based onin situgrowth all-inorganic CsPbBr3 perovskite nanocrystals in PVDF fibers with long-term stabilityAdv. Funct. Mater.312011073

[74] [74] Zhang H Cet al2023 Recent advances in nanofiber-based flexible transparent electrodesInt. J. Extrem. Manuf.5032005

[75] [75] Chen B D, Tang W and Wang Z L 2021 Advanced 3D printing-based triboelectric nanogenerator for mechanical energy harvesting and self-powered sensingMater. Today50224–38

[76] [76] Chen Set al2018 A single integrated 3D-printing process customizes elastic and sustainable triboelectric nanogenerators for wearable electronicsAdv. Funct. Mater.281805108

[77] [77] Tong Y X, Feng Z A, Kim J, Robertson J L, Jia X T and Johnson B N 2020 3D printed stretchable triboelectric nanogenerator fibers and devicesNano Energy75104973

[78] [78] Zhou L Y, Fu J Z and He Y 2020 A review of 3D printing technologies for soft polymer materialsAdv. Funct. Mater.302000187

[79] [79] Shepelin N A, Sherrell P C, Goudeli E, Skountzos E N, Lussini V C, Dicinoski G W, Shapter J G and Ellis A V 2020 Printed recyclable and self-poled polymer piezoelectric generators through single-walled carbon nanotube templatingEnergy Environ. Sci.13868–83

[80] [80] Yuan X T, Gao X Y, Yang J K, Shen X Y, Li Z M, You S J, Wang Z H and Dong S X 2020 The large piezoelectricity and high power density of a 3D-printed multilayer copolymer in a rugby ball-structured mechanical energy harvesterEnergy Environ. Sci.13152–61

[81] [81] Ji S, Shin J, Yoon J, Lim K H, Sim G D, Lee Y S, Kim D H, Cho H and Park J 2022 Three-dimensional skin-type triboelectric nanogenerator for detection of two-axis robotic-arm collisionNano Energy97107225

[82] [82] Goh Q L, Chee P S, Lim E H and Ng D W K 2022 An AI-assisted and self-powered smart robotic gripper based on Eco-EGaIn nanocomposite for pick-and-place operationNanomaterials121317

[83] [83] Liang F, Zhao X J, Li H Y, Fan Y J, Cao J W, Wang Z L and Zhu G 2020 Stretchable shape-adaptive liquid-solid interface nanogenerator enabled byin-situcharged nanocomposite membraneNano Energy69104414

[84] [84] Wang Z L and Wang A C 2019 On the origin of contact-electrificationMater. Today3034–51

[85] [85] Zhao H F, Wang H, Yu H Y, Xu Q H, Li X S, Guo J, Shao J J, Wang Z L, Xu M Y and Ding W B 2024 Theoretical modeling of contact-separation mode triboelectric nanogenerators from initial charge distributionEnergy Environ. Sci.172228–47

[86] [86] Fan F R, Tang W and Wang Z L 2016 Flexible nanogenerators for energy harvesting and self-powered electronicsAdv. Mater.284283–305

[87] [87] Pang Y K, Xu X C, Chen S E, Fang Y H, Shi X D, Deng Y M, Wang Z L and Cao C Y 2022 Skin-inspired textile-based tactile sensors enable multifunctional sensing of wearables and soft robotsNano Energy96107137

[88] [88] Li Jet al2023 Thin, soft, 3D printing enabled crosstalk minimized triboelectric nanogenerator arrays for tactile sensingFundam. Res.3111–7

[89] [89] Luo Y, Wang Z H, Wang J Y, Xiao X, Li Q, Ding W B and Fu H Y 2021 Triboelectric bending sensor based smart glove towards intuitive multi-dimensional human-machine interfacesNano Energy89106330

[90] [90] Xiong Y, Wang Y F, Zhang J T, Zheng L, Liu Y, Jiao H S, Yang J H, Wang Z L and Sun Q J 2024 Endowing TENGs with sequential logicDevice2100472

[91] [91] Lee Y, Ren Z J, Hsiao Y H, Kim S, Song W J, Lee C and Chen Y F 2024 Liftoff of a soft-actuated micro-aerial-robot powered by triboelectric nanogeneratorsNano Energy126109602

[92] [92] Wang Z L 2017 On Maxwell's displacement current for energy and sensors: the origin of nanogeneratorsMater. Today2074–82

[93] [93] Sun J F, Zhang L J, Gong S Q, Chen J and Guo H Y 2024 Device physics and application prospect of the emerging high-voltage supply technology arising from triboelectric nanogeneratorNano Energy119109010

[94] [94] Xu Cet al2018 On the electron-transfer mechanism in the contact-electrification effectAdv. Mater.301706790

[95] [95] Choi D, Kim D W, Yoo D, Cha K J, La M and Kim D S 2017 Spontaneous occurrence of liquid-solid contact electrification in nature: toward a robust triboelectric nanogenerator inspired by the natural lotus leafNano Energy36250–9

[96] [96] Xu Cet al2018 Raising the working temperature of a triboelectric nanogenerator by quenching down electron thermionic emission in contact-electrificationAdv. Mater.301803968

[97] [97] Bai P, Zhu G, Zhou Y S, Wang S H, Ma J S, Zhang G and Wang Z L 2014 Dipole-moment-induced effect on contact electrification for triboelectric nanogeneratorsNano Res.7990–7

[98] [98] Zhang H, Quan L W, Chen J K, Xu C K, Zhang C H, Dong S R, L C F and Luo J K 2019 A general optimization approach for contact-separation triboelectric nanogeneratorNano Energy56700–7

[99] [99] Shao J J, Willatzen M and Wang Z L 2020 Theoretical modeling of triboelectric nanogenerators (TENGs)J. Appl. Phys.128111101

[100] [100] Dharmasena R D I G, Jayawardena K D G I, Mills C A, Deane J H B, Anguita J V, Dorey R A and Silva S R P 2017 Triboelectric nanogenerators: providing a fundamental frameworkEnergy Environ. Sci.101801–11

[101] [101] Wu J, Wang X L, Li H Q, Wang F, Yang W X and Hu Y Q 2018 Insights into the mechanism of metal-polymer contact electrification for triboelectric nanogenerator via first-principles investigationsNano Energy48607–16

[102] [102] Zhou Y S, Wang S H, Yang Y, Zhu G, Niu S M, Lin Z-H, Liu Y and Wang Z L 2014 Manipulating nanoscale contact electrification by an applied electric fieldNano Lett.141567–72

[103] [103] Wang S H, Xie Y N, Niu S M, Lin L, Liu C, Zhou Y S and Wang Z L 2014 Maximum surface charge density for triboelectric nanogenerators achieved by ionized-air injection: methodology and theoretical understandingAdv. Mater.266720–8

[104] [104] Zhao H Fet al2022 Underwater wireless communication via TENG-generated Maxwell's displacement currentNat. Commun.133325

[105] [105] Zi Y L, Niu S M, Wang J, Wen Z, Tang W and Wang Z L 2015 Standards and figure-of-merits for quantifying the performance of triboelectric nanogeneratorsNat. Commun.68376

[106] [106] Zi Y L, Guo H Y, Wen Z, Yeh M H, Hu C G and Wang Z L 2016 Harvesting low-frequency (<5 Hz) irregular mechanical energy: a possible killer application of triboelectric nanogeneratorACS Nano104797–805

[107] [107] Tang L R, Hui X D, Chen J, Guo H Y and Wu F 2023 Self-powered, anti-detectable wireless near-field communication strategy based on mechano-driven Maxwell's displacement currentNano Energy118109001

[108] [108] Gao Z Y, Zhou J, Gu Y D, Fei P, Hao Y, Bao G and Wang Z L 2009 Effects of piezoelectric potential on the transport characteristics of metal-ZnO nanowire-metal field effect transistorJ. Appl. Phys.105113707

[109] [109] Wang Z L and Song J H 2006 Piezoelectric nanogenerators based on zinc oxide nanowire arraysScience312242–6

[110] [110] Seol M, Kim S, Cho Y, Byun K E, Kim H, Kim J, Kim S K, Kim S W, Shin H J and Park S 2018 Triboelectric series of 2D layered materialsAdv. Mater.301801210

[111] [111] Yoo D, Jang S, Cho S, Choi D and Kim D S 2023 A liquid triboelectric seriesAdv. Mater.352300699

[112] [112] Khandelwal G, Maria Joseph Raj N P and Kim S J 2021 Materials beyond conventional triboelectric series for fabrication and applications of triboelectric nanogeneratorsAdv. Energy Mater.112101170

[113] [113] Qu X C, Liu Z, Tan P C, Wang C, Liu Y, Feng H Q, Luo D, Li Z and Wang Z L 2022 Artificial tactile perception smart finger for material identification based on triboelectric sensingSci. Adv.8eabq2521

[114] [114] Yao G, Xu L, Cheng X W, Li Y Y, Huang X, Guo W, Liu S Y, Wang Z L and Wu H 2019 Bioinspired triboelectric nanogenerators as self-powered electronic skin for robotic tactile sensingAdv. Funct. Mater.301907312

[115] [115] Bu T Zet al2018 Stretchable triboelectric–photonic smart skin for tactile and gesture sensingAdv. Mater.301800066

[116] [116] He J H, Xie Z Q, Yao K M, Li D F, Liu Y M, Gao Z, Lu W, Chang L Q and Yu X G 2021 Trampoline inspired stretchable triboelectric nanogenerators as tactile sensors for epidermal electronicsNano Energy81105590

[117] [117] Zhou Y H, Deng W L, Xu J and Chen J 2020 Engineering materials at the nanoscale for triboelectric nanogeneratorsCell Rep. Phys. Sci.1100142

[118] [118] Cui X, Nie J H and Zhang Y 2024 Recent advances in high charge density triboelectric nanogeneratorsInt. J. Extrem. Manuf.6042001

[119] [119] Moradi F, Karimzadeh F and Kharaziha M 2023 Rational micro/nano-structuring for high-performance triboelectric nanogeneratorJ. Alloys Compd.960170693

[120] [120] Huang J, Fu X P, Liu G X, Xu S H, Li X W, Zhang C and Jiang L 2019 Micro/nano-structures-enhanced triboelectric nanogenerators by femtosecond laser direct writingNano Energy62638–44

[121] [121] Yang W X, Wang X L, Li H Q, Wu J, Hu Y Q, Li Z H and Liu H 2019 Fundamental research on the effective contact area of micro-/nano-textured surface in triboelectric nanogeneratorNano Energy5741–47

[122] [122] Li S Y, Fan Y, Chen H Q, Nie J H, Liang Y X, Tao X L, Zhang J, Chen X Y, Fu E G and Wang Z L 2020 Manipulating the triboelectric surface charge density of polymers by low-energy helium ion irradiation/implantationEnergy Environ. Sci.13896–907

[123] [123] Shin S H, Bae Y E, Moon H K, Kim J, Choi S H, Kim Y, Yoon H J, Lee M H and Nah J 2017 Formation of triboelectric series via atomic-level surface functionalization for triboelectric energy harvestingACS Nano116131–8

[124] [124] Jie Y, Wang N, Cao X, Xu Y, Li T, Zhang X J and Wang Z L 2015 Self-powered triboelectric nanosensor with poly (tetrafluoroethylene) nanoparticle arrays for dopamine detectionACS Nano98376–83

[125] [125] Zhang Y J, Zhou Z T, Sun L, Liu Z, Xia X X and Tao T H 2018 “Genetically engineered” biofunctional triboelectric nanogenerators using recombinant spider silkAdv. Mater.301805722

[126] [126] Busolo T, Szewczyk P K, Nair M, Stachewicz U and Kar-Narayan S 2021 Triboelectric yarns with electrospun functional polymer coatings for highly durable and washable smart textile applicationsACS Appl. Mater. Interfaces1316876–86

[127] [127] Sun W X, Luo N, Liu Y B, Li H and Wang D A 2022 A new self-healing triboelectric nanogenerator based on polyurethane coating and its application for self-powered cathodic protectionACS Appl. Mater. Interfaces1410498–507

[128] [128] Chen H M, Bai L, Li T, Zhao C, Zhang J S, Zhang N, Song G F, Gan Q Q and Xu Y 2018 Wearable and robust triboelectric nanogenerator based on crumpled gold filmsNano Energy4673–80

[129] [129] Liang Yet al2024 Advances of strategies to increase the surface charge density of triboelectric nanogenerators: a reviewSmall202308469

[130] [130] Wu C X, Kim T W and Choi H Y 2017 Reduced graphene-oxide acting as electron-trapping sites in the friction layer for giant triboelectric enhancementNano Energy32542–50

[131] [131] Li Z K, Yu A F, Zhang Q and Zhai J Y 2024 Recent advances in fabricating high-performance triboelectric nanogenerators via modulating surface charge densityInt. J. Extrem. Manuf.6052003

[132] [132] Kang X F, Pan C X, Chen Y H and Pu X 2020 Boosting performances of triboelectric nanogenerators by optimizing dielectric properties and thickness of electrification layerRSC Adv.1017752–9

[133] [133] Seung Wet al2017 Boosting power-generating performance of triboelectric nanogenerators via artificial control of ferroelectric polarization and dielectric propertiesAdv. Energy Mater.71600988

[134] [134] Fan F R, Lin L, Zhu G, Wu W Z, Zhang R and Wang Z L 2012 Transparent triboelectric nanogenerators and self-powered pressure sensors based on micropatterned plastic filmsNano Lett.123109–14

[135] [135] Park I Wet al2019 Vertically aligned cyclo-phenylalanine peptide nanowire-based high-performance triboelectric energy generatorNano Energy57737–45

[136] [136] Liu Y H, Fu Q, Mo J L, Lu Y X, Cai C C, Luo B and Nie S X 2021 Chemically tailored molecular surface modification of cellulose nanofibrils for manipulating the charge density of triboelectric nanogeneratorsNano Energy89106369

[137] [137] Sun J G, Guo H Y, Ribera J, Wu C S, Tu K K, Binelli M, Panzarasa G, Schwarze F W M R, Wang Z L and Burgert I 2020 Sustainable and biodegradable wood sponge piezoelectric nanogenerator for sensing and energy harvesting applicationsACS Nano1414665–74

[138] [138] Jin L, Ma S Y, Deng W L, Yan C, Yang T, Chu X, Tian G, Xiong D, Lu J and Yang W Q 2018 Polarization-free high-crystallization -PVDF piezoelectric nanogenerator toward self-powered 3D acceleration sensorNano Energy50632–8

[139] [139] Huang X Met al2021 Piezoelectric nanogenerator for highly sensitive and synchronous multi-stimuli sensingACS Nano1519783–92

[140] [140] Lin X D, Feng Z Y, Xiong Y, Sun W W, Yao W C, Wei Y C, Wang Z L and Sun Q J 2024 Piezotronic neuromorphic devices: principle, manufacture, and applicationsInt. J. Extrem. Manuf.6032011

[141] [141] Liu Y Z, Hao Z W, Yu J X, Zhou X R, Lee P S, Sun Y, Mu Z C and Zeng F L 2019 A high-performance soft actuator based on a poly (vinylidene fluoride) piezoelectric bimorphSmart Mater. Struct.28055011

[142] [142] Wang S P, Rong W B, Wang L F, Xie H, Sun L N and Mills J K 2019 A survey of piezoelectric actuators with long working stroke in recent years: classifications, principles, connections and distinctionsMech. Syst. Signal Process.123591–605

[143] [143] Sezer N and Ko M 2021 A comprehensive review on the state-of-the-art of piezoelectric energy harvestingNano Energy80105567

[144] [144] Yan J, Liu M, Jeong Y G, Kang W M, Li L, Zhao Y X, Deng N P, Cheng B W and Yang G 2019 Performance enhancements in poly (vinylidene fluoride)-based piezoelectric nanogenerators for efficient energy harvestingNano Energy56662–92

[145] [145] Hanani Zet al2021 Lead-free nanocomposite piezoelectric nanogenerator film for biomechanical energy harvestingNano Energy81105661

[146] [146] Zhu Q L, Wu T and Wang N 2023 From piezoelectric nanogenerator to non-invasive medical sensor: a reviewBiosensors13113

[147] [147] Zaszczyska A, Gradys A and Sajkiewicz P 2020 Progress in the applications of smart piezoelectric materials for medical devicesPolymers122754

[148] [148] Park K Iet al2014 Highly-efficient, flexible piezoelectric PZT thin film nanogenerator on plastic substratesAdv. Mater.262514–20

[149] [149] Sekine Tet al2023 Robotic e-skin for high performance stretchable acceleration sensor via combinations of novel soft and functional polymersAppl. Mater. Today33101877

[150] [150] Kim I, Roh H, Yu J, Jayababu N and Kim D 2020 Boron nitride nanotube-based contact electrification-assisted piezoelectric nanogenerator as a kinematic sensor for detecting the flexion–extension motion of a robot fingerACS Energy Lett.51577–85

[151] [151] Lee J H, Heo K, Schulz-Schnhagen K, Lee J H, Desai M S, Jin H E and Lee S W 2018 Diphenylalanine peptide nanotube energy harvestersACS Nano128138–44

[152] [152] Wei H Get al2018 An overview of lead-free piezoelectric materials and devicesJ. Mater. Chem.C612446–67

[153] [153] Chen Y, Zhang D L, Peng Z, Yuan M D and Ji X R 2021 Review of research on the rare-earth doped piezoelectric materialsFront. Mater.8679167

[154] [154] Zhai L D, Kim H C, Kim J W and Kim J 2020 Alignment effect on the piezoelectric properties of ultrathin cellulose nanofiber filmsACS Appl. Bio Mater.34329–34

[155] [155] Jiang Y G, Gong L L, Hu X H, Zhao Y, Chen H W, Feng L and Zhang D Y 2018 Aligned P(VDF-TrFE) nanofibers for enhanced piezoelectric directional strain sensingPolymers10364

[156] [156] Su Y Jet al2021 Piezoelectric fiber composites with polydopamine interfacial layer for self-powered wearable biomonitoringNano Energy89106321

[157] [157] Chen X L, Shao J Y, Tian H M, Li X M, Tian Y Z and Wang C 2018 Flexible three-axial tactile sensors with microstructure-enhanced piezoelectric effect and specially-arranged piezoelectric arraysSmart Mater. Struct.27025018

[158] [158] Bairagi S and Ali S W 2020 Flexible lead-free PVDF/SM-KNN electrospun nanocomposite based piezoelectric materials: significant enhancement of energy harvesting efficiency of the nanogeneratorEnergy198117385

[159] [159] Lv F, Hong Z J, Ahmad Z, Li H Y, Wu Y J and Huang Y H 2023 Design of flexible piezoelectric nanocomposite for energy harvesters: a reviewEnergy Mater. Adv.40043

[160] [160] Ye S Bet al2019 High-performance piezoelectric nanogenerator based on microstructured P(VDF-TrFE)/BNNTs composite for energy harvesting and radiation protection in spaceNano Energy60701–14

[161] [161] Liu J Y, Zeng S, Zhang M R, Xiong J, Gu H S, Wang Z, Hu Y M, Zhang X H, Du Y and Ren L 2023 Giant piezoelectric output and stability enhancement in piezopolymer composites with liquid metal nanofillersAdv. Sci.102304096

[162] [162] Lai Y C, Deng J N, Liu R Y, Hsiao Y C, Zhang S L, Peng W B, Wu H M, Wang X F and Wang Z L 2018 Actively perceiving and responsive soft robots enabled by self-powered, highly extensible, and highly sensitive triboelectric proximity-and pressure-sensing skinsAdv. Mater.301801114

[163] [163] Gao Z Q, Wu S K, Wei Y H, Ibrahim M, Abdelhamid H N, Jiang G Y, Cao J, Sun X H and Wen Z 2024 Holistic and localized preparation methods for triboelectric sensors: principles, applications and perspectivesInt. J. Extrem. Manuf.6052002

[164] [164] Wu L X, Meng L, Wang Y Y, Lv M, Ouyang T Y, Wang Y L and Zeng X Y 2023 Fabrication of polyetheretherketone (PEEK)-based 3D electronics with fine resolution by a hydrophobic treatment assisted hybrid additive manufacturing methodInt. J. Extrem. Manuf.5035003

[165] [165] Chen B Det al2018 Three-dimensional ultraflexible triboelectric nanogenerator made by 3D printingNano Energy45380–9

[166] [166] Huang T, Zhang Y J, He P, Wang G, Xia X X, Ding G Q and Tao T H 2020 “Self-matched” tribo/piezoelectric nanogenerators using vapor-induced phase-separated poly (vinylidene fluoride) and recombinant spider silkAdv. Mater.321907336

[167] [167] Liang X W, Lu J B, Zhao T, Yu X C, Jiang Q S, Hu Y G, Zhu P L, Sun R and Wong C P 2019 Facile and efficient welding of silver nanowires based on UVA-induced nanoscale photothermal process for roll-to-roll manufacturing of high-performance transparent conducting filmsAdv. Mater. Interfaces61801635

[168] [168] Yildirim Aet al2020 Roll-to-roll production of novel large-area piezoelectric films for transparent, flexible, and wearable fabric loudspeakersAdv. Mater. Technol.52000296

[169] [169] Fang C, Zhong H F, Liu M J, Zhang S H, Huang Z X and Qu J P 2024 Highly tribo-positive Nylon-11 film fabricated by multiscale structural regulation through a roll-to-roll processingACS Appl. Mater. Interfaces1629257–66

[170] [170] Liu Y Bet al2022 The continuous fabrication of a high-performance triboelectric nanogenerator by a roll-to-roll processJ. Mater. Chem.A1016547–54

[171] [171] Sun X, Feng Y G, Wang B Q, Liu Y, Wu Z S, Yang D, Zheng Y B, Peng J L, Feng M and Wang D A 2021 A new method for the electrostatic manipulation of droplet movement by triboelectric nanogeneratorNano Energy86106115

[172] [172] Xu H Y, Tao J, Liu Y, Mo Y P, Bao R R and Pan C F 2022 Fully fibrous large-area tailorable triboelectric nanogenerator based on solution blow spinning technology for energy harvesting and self-powered sensingSmall182202477

[173] [173] Shin S H, Choi S Y, Lee M H and Nah J 2017 High-performance piezoelectric nanogenerators via imprinted sol–gel BaTiO3 nanopillar arrayACS Appl. Mater. Interfaces941099–103

[174] [174] Ganesh R S, Sharma S K, Abinnas N, Durgadevi E, Raji P, Ponnusamy S, Muthamizhchelvan C, Hayakawa Y and Kim D Y 2017 Fabrication of the flexible nanogenerator from BTO nanopowders on graphene coated PMMA substrates by sol-gel methodMater. Chem. Phys.192274–81

[175] [175] Liu S Y, Zou D, Yu X G, Wang Z K and Yang Z B 2020 Transfer-free PZT thin films for flexible nanogenerators derived from a single-step modified sol–gel process on 2D micaACS Appl. Mater. Interfaces1254991–9

[176] [176] Li H and Lim S 2022 Screen printing of surface-modified barium titanate/polyvinylidene fluoride nanocomposites for high-performance flexible piezoelectric nanogeneratorsNanomaterials122910

[177] [177] Emamian S, Narakathu B B, Chlaihawi A A, Bazuin B J and Atashbar M Z 2017 Screen printing of flexible piezoelectric based device on polyethylene terephthalate (PET) and paper for touch and force sensing applicationsSens. ActuatorsA263639–47

[178] [178] Lu L J, Ding W Q, Liu J Q and Yang B 2020 Flexible PVDF based piezoelectric nanogeneratorsNano Energy78105251

[179] [179] Hu D W, Yao M G, Fan Y, Ma C R, Fan M J and Liu M 2019 Strategies to achieve high performance piezoelectric nanogeneratorsNano Energy55288–304

[180] [180] Yin B, Qiu Y, Zhang H Q, Ji J Y, Lei J X, Luo Y M, Zhao Y and Hu L Z 2015 Piezoelectric nanogenerator with 3D-ZnO micro-thornyballs prepared by chemical vapour depositionJ. Mater. Sci., Mater. Electron26742–6

[181] [181] Kim S K, Bhatia R, Kim T H, Seol D, Kim J H, Kim H, Seung W, Kim Y, Lee Y H and Kim S W 2016 Directional dependent piezoelectric effect in CVD grown monolayer MoS2for flexible piezoelectric nanogeneratorsNano Energy22483–9

[182] [182] Al-Ruqeishi M S, Mohiuddin T, Al-Habsi B, Al-Ruqeishi F, Al-Fahdi A and Al-Khusaibi A 2019 Piezoelectric nanogenerator based on ZnO nanorodsArab. J. Chem.125173–9

[183] [183] Cao V A, Kim M, Hu W G, Lee S, Youn S, Chang J, Chang H S and Nah J 2021 Enhanced piezoelectric output performance of the SnS2/SnS heterostructure thin-film piezoelectric nanogenerator realized by atomic layer depositionACS Nano1510428–36

[184] [184] Zhu L Y, Yang J G, Yuan K, Chen H Y, Wang T, Ma H P, Huang W, Lu H L and Zhang D W 2018 Enhanced piezoelectric performance of the ZnO/AlN stacked nanofilm nanogenerator grown by atomic layer depositionAPL Mater.6121109

[185] [185] Li Y, Goei R, Ong A J, Zou Y M, Dayan A S, Rahmany S, Etgar L and Tok A I Y 2024 Atomic layer deposition of piezoelectric materials: a timely reviewMater. Today Energy39101457

[186] [186] Zhang Z, Chen Y and Guo J S 2019 ZnO nanorods patterned-textile using a novel hydrothermal method for sandwich structured-piezoelectric nanogenerator for human energy harvestingPhysicaE105212–8

[187] [187] Ou C L, Sanchez-Jimenez P E, Datta A, Boughey F L, Whiter R A, Sahonta S L and Kar-Narayan S 2016 Template-assisted hydrothermal growth of aligned zinc oxide nanowires for piezoelectric energy harvesting applicationsACS Appl. Mater. Interfaces813678–83

[188] [188] Li W, Cao Y Q and Seplveda N 2022 Thin film piezoelectric nanogenerator based on (100)-oriented nanocrystalline AlN grown by pulsed laser deposition at room temperatureMicromachines1499

[189] [189] Cho H, Jo S, Kim I and Kim D 2021 Film-sponge-coupled triboelectric nanogenerator with enhanced contact area based on direct ultraviolet laser ablationACS Appl. Mater. Interfaces1348281–91

[190] [190] Vakulov Z, Geldash A, Khakhulin D, Il'ina M V, Il'in O I, Klimin V S, Dzhuplin V N, Konoplev B G, He Z B and Ageev O A 2020 Piezoelectric energy harvester based on LiNbO3 thin filmsMaterials133984

[191] [191] Yao D Set al2019 Achieving the upper bound of piezoelectric response in tunable, wearable 3D printed nanocompositesAdv. Funct. Mater.291903866

[192] [192] Zhang Jet al2020 3D printed piezoelectric BNNTs nanocomposites with tunable interface and microarchitectures for self-powered conformal sensorsNano Energy77105300

[193] [193] Su Y Jet al2022 High-performance piezoelectric composites via phase programmingNat. Commun.134867

[194] [194] Wang S, Shao H Q, Liu Y, Tang C Y, Zhao X, Ke K, Bao R Y, Yang M B and Yang W 2021 Boosting piezoelectric response of PVDF-TrFE via MXene for self-powered linear pressure sensorCompos. Sci. Technol.202108600

[195] [195] Zhou X R, Parida K, Halevi O, Liu Y Z, Xiong J Q, Magdassi S and Lee P S 2020 All 3D-printed stretchable piezoelectric nanogenerator with non-protruding kirigami structureNano Energy72104676

[196] [196] He L R, Lu J, Han C, Liu X G, Liu J F and Zhang C H 2022 Electrohydrodynamic pulling consolidated high-efficiency 3D printing to architect unusual self-polarized -PVDF arrays for advanced piezoelectric sensingSmall182200114

[197] [197] Guan X Y, Xu B G and Gong J L 2020 Hierarchically architected polydopamine modified BaTiO3@P(VDF-TrFE) nanocomposite fiber mats for flexible piezoelectric nanogenerators and self-powered sensorsNano Energy70104516

[198] [198] Li Tet al2021 High-performance poly (vinylidene difluoride)/dopamine core/shell piezoelectric nanofiber and its application for biomedical sensorsAdv. Mater.332006093

[199] [199] Hui X D, Tang L R, Zhang D W, Yan S L, Li D X, Chen J, Wu F, Wang Z L and Guo H Y 2024 Acoustically enhanced triboelectric stethoscope for ultrasensitive cardiac sounds sensing and disease diagnosisAdv. Mater.362401508

[200] [200] Hu Z H, Hui X D, Li S M, Tang L R, Sun J F, Zeng H J, Chen J and Guo H Y 2023 A self-powered, high-precision and minimum-channel touch panel coupling triboelectrification and uniform resistance filmNano Energy114108676

[201] [201] Ding W B, Wang A C, Wu C S, Guo H Y and Wang Z L 2019 Human–machine interfacing enabled by triboelectric nanogenerators and tribotronicsAdv. Mater. Technol.41800487

[202] [202] Xu Z Y, Zhou F H, Yan H Z, Gao G R, Li H J, Li R and Chen T 2021 Anti-freezing organohydrogel triboelectric nanogenerator toward highly efficient and flexible human-machine interaction at &#x2212;30 ℃Nano Energy90106614

[203] [203] Zhu P C, Zhang B S, Wang H Y, Wu Y H, Cao H J, He L B, Li C Y, Luo X P, Li X and Mao Y C 2022 3D printed triboelectric nanogenerator as self-powered human-machine interactive sensor for breathing-based language expressionNano Res.157460–7

[204] [204] Pu X J, Guo H Y, Tang Q, Chen J, Feng L, Liu G L, Wang X, Xi Y, Hu C G and Wang Z L 2018 Rotation sensing and gesture control of a robot joint via triboelectric quantization sensorNano Energy54453–60

[205] [205] Liu W Bet al2022 Touchless interactive teaching of soft robots through flexible bimodal sensory interfacesNat. Commun.135030

[206] [206] Mu S Let al2023 A platypus-inspired electro-mechanosensory finger for remote control and tactile sensingNano Energy116108790

[207] [207] Deng W Let al2019 Cowpea-structured PVDF/ZnO nanofibers based flexible self-powered piezoelectric bending motion sensor towards remote control of gesturesNano Energy55516–25

[208] [208] Ahmed A, Zhang S L, Hassan I, Saadatnia Z, Zi Y L, Zu J and Wang Z L 2017 A washable, stretchable, and self-powered human-machine interfacing triboelectric nanogenerator for wireless communications and soft robotics pressure sensor arraysExtrem. Mech. Lett.1325–35

[209] [209] Lee H Set al2014 Flexible inorganic piezoelectric acoustic nanosensors for biomimetic artificial hair cellsAdv. Funct. Mater.246914–21

[210] [210] Jin G Q, Sun Y Y, Geng J J, Yuan X, Chen T, Liu H C, Wang F X and Sun L N 2021 Bioinspired soft caterpillar robot with ultra-stretchable bionic sensors based on functional liquid metalNano Energy84105896

[211] [211] Zhu D K, Lu J F, Zheng M J, Wang D K, Wang J Y, Liu Y X, Wang X H and Zhang M 2023 Self-powered bionic antenna based on triboelectric nanogenerator for micro-robotic tactile sensingNano Energy114108644

[212] [212] Lu D Jet al2023 Wearable triboelectric visual sensors for tactile perceptionAdv. Mater.352209117

[213] [213] Guo H Yet al2018 A highly sensitive, self-powered triboelectric auditory sensor for social robotics and hearing aidsSci. Robot.3eaat2516

[214] [214] Roy Barman S, Lin Y J, Lee K M, Pal A, Tiwari N, Lee S and Lin Z H 2023 Triboelectric nanosensor integrated with robotic platform for self-powered detection of chemical analytesACS Nano172689–701

[215] [215] Fu J J, Song Z W, Wang H Y, Xu G Q, Li X Y, Ding W B and Zi Y L 2024 Deep-learning assisted biomimetic self-powered wireless electronic noses system enabled by triboelectric dischargeNano Energy121109156

[216] [216] Jin Tet al2020 Triboelectric nanogenerator sensors for soft robotics aiming at digital twin applicationsNat. Commun.115381

[217] [217] Qiao W Yet al2022 A self-powered vector motion sensor for smart robotics and personalized medical rehabilitationNano Energy104107936

[218] [218] Peng L L, Zhang Y X, Wang J, Wang Q Y, Zheng G Z, Li Y Y, Chen Z P, Chen Y, Jiang L L and Wong C P 2022 Slug-inspired magnetic soft millirobot fully integrated with triboelectric nanogenerator for on-board sensing and self-powered chargingNano Energy99107367

[219] [219] Sheng T Y, He Q P, Cao Y D, Dong Z H, Gai Y S, Zhang W Q, Zhang D Y, Chen H W and Jiang Y G 2023 Fish-wearable piezoelectric nanogenerator for dual-modal energy scavenging from fish-tailingACS Appl. Mater. Interfaces1539570–7

[220] [220] Song Z Wet al2022 A flexible triboelectric tactile sensor for simultaneous material and texture recognitionNano Energy93106798

[221] [221] Park Jet al2022 Frequency-selective acoustic and haptic smart skin for dual-mode dynamic/static human-machine interfaceSci. Adv.8eabj9220

[222] [222] Cao X L, Xiong Y, Sun J, Xie X Y, Sun Q J and Wang Z L 2023 Multidiscipline applications of triboelectric nanogenerators for the intelligent era of Internet of ThingsNano-Micro Lett.1514

[223] [223] Wang Y F, Sun Q J, Yu J R, Xu N, Wei Y C, Cho J H and Wang Z L 2023 Boolean logic computing based on neuromorphic transistorAdv. Funct. Mater.332305791

[224] [224] Luo Let al2022 Kirigami interactive triboelectric mechanologicNano Energy99107345

[225] [225] Kim H, Oh S, Choo H, Kang D H and Park J H 2023 Tactile neuromorphic system: convergence of triboelectric polymer sensor and ferroelectric polymer synapseACS Nano1717332–41

[226] [226] Khan M U, Abbas Y, Rezeq M D, Alazzam A and Mohammad B 2024 Unidirectional neuromorphic resistive memory integrated with piezoelectric nanogenerator for self-power electronicsAdv. Funct. Mater.342305869

[227] [227] Gao X Y, Yang J K, Wu J G, Xin X D, Li Z M, Yuan X T, Shen X Y and Dong S X 2020 Piezoelectric actuators and motors: materials, designs, and applicationsAdv. Mater. Technol.51900716

[228] [228] Xavier M Set al2022 Soft pneumatic actuators: a review of design, fabrication, modeling, sensing, control and applicationsIEEE Access1059442–85

[229] [229] Suzumori K and Faudzi A A 2018 Trends in hydraulic actuators and components in legged and tough robots: a reviewAdv. Robot.32458–76

[230] [230] Wu S, Baker G L, Yin J and Zhu Y 2022 Fast thermal actuators for soft roboticsSoft Robot.91031–9

[231] [231] Yang Z X and Zhang L 2020 Magnetic actuation systems for miniature robots: a reviewAdv. Intell. Syst.22000082

[232] [232] Liu Y, Chen B D, Li W, Zu L L, Tang W and Wang Z L 2021 Bioinspired triboelectric soft robot driven by mechanical energyAdv. Funct. Mater.312104770

[233] [233] Jin X, Shi Y P, Yuan Z H, Huo X Q, Wu Z Y and Wang Z L 2022 Bio-inspired soft actuator with contact feedback based on photothermal effect and triboelectric nanogeneratorNano Energy99107366

[234] [234] Sun W J, Li B, Zhang F, Fang C L, Lu Y J, Gao X, Cao C J, Chen G M, Zhang C and Wang Z L 2021 TENG-Bot: triboelectric nanogenerator powered soft robot made of uni-directional dielectric elastomerNano Energy85106012

[235] [235] Liang J Met al2021 Electrostatic footpads enable agile insect-scale soft robots with trajectory controlSci. Robot.6eabe7906

[236] [236] Liu Y X, Li J, Deng J, Zhang S J, Chen W S, Xie H and Zhao J 2021 Arthropod-metamerism-inspired resonant piezoelectric millirobotAdv. Intell. Syst.32100015

[237] [237] Wang Z L 2021 From contact electrification to triboelectric nanogeneratorsRep Prog. Phys.84096502

[238] [238] Xia H S, Zhang Y C, Rajabi N, Taleb F, Yang Q T, Kragic D and Li Z J 2024 Shaping high-performance wearable robots for human motor and sensory reconstruction and enhancementNat. Commun.151760

[239] [239] Guo Z H, Wang H L, Shao J J, Shao Y S, Jia L Y, Li L W, Pu X and Wang Z L 2022 Bioinspired soft electroreceptors for artificial precontact somatosensationSci. Adv.8eabo5201

[240] [240] Gou G Yet al2022 Two-stage amplification of an ultrasensitive MXene-based intelligent artificial eardrumSci. Adv.8eabn2156

[241] [241] Jiang Y, Zhang Y F, Ning C, Ji Q Q, Peng X, Dong K and Wang Z L 2022 Ultrathin eardrum-inspired self-powered acoustic sensor for vocal synchronization recognition with the assistance of machine learningSmall182106960

[242] [242] Hu Z Y, Zhang Y L, Pan C, Dou J Y, Li Z Z, Tian Z N, Mao J W, Chen Q D and Sun H B 2022 Miniature optoelectronic compound eye cameraNat. Commun.135634

[243] [243] Zhang Y Z, Chen X, Wang M Y and Yu H Y 2022 Multidimensional tactile sensor with a thin compound eye-inspired imaging systemSoft Robot.9861–70

[244] [244] Chen J S and Ran X K 2019 Deep learning with edge computing: a reviewProc. IEEE1071655–74

[245] [245] Guo Y X, Qin Q C, Han Z Q, Plamthottam R, Possinger M and Pei Q B 2023 Dielectric elastomer artificial muscle materials advancement and soft robotic applicationsSmartMat4e1203

[246] [246] Zhao L M, Tian H M, Liu H R, Zhang W T, Zhao F B, Song X W and Shao J Y 2023 Bio-inspired soft-rigid hybrid smart artificial muscle based on liquid crystal elastomer and helical metal wireSmall192206342

[247] [247] Nguyen C Cet al2023 Development of a soft robotic catheter for vascular intervention surgerySens. ActuatorsA357114380

[248] [248] Baburova P I, Kladko D V, Lokteva A, Pozhitkova A, Rumyantceva V, Rumyantceva V, Pankov I V, Taskaev S and Vinogradov V V 2023 Magnetic soft robot for minimally invasive urethral catheter biofilm eradicationACS Nano1720925–38

[249] [249] Hu L, Bonnemain J, Saeed M Y, Singh M, Quevedo Moreno D, Vasilyev N V and Roche E T 2023 An implantable soft robotic ventilator augments inspiration in a pig model of respiratory insufficiencyNat. Biomed. Eng.7110–23

[250] [250] Desai T and Grattoni A 2023 Robotic self-modulation enhances implantable long-acting drug delivery devicesSci. Robot.8eadj8292

Tools

Get Citation

Copy Citation Text

Zhao Hongfa, Ruan Liguang, Wang Zihan, Shu Mingrui, Lyu Chuqiao, Lakshan Bulathsinghala Rameesh, Ishara Dharmasena, Wu Changsheng, Ding Wenbo. Flexible nanogenerators for intelligent robotics: design, manufacturing, and applications[J]. International Journal of Extreme Manufacturing, 2025, 7(2): 22012

Download Citation

EndNote(RIS)BibTexPlain Text
Save article for my favorites
Paper Information

Category:

Received: Jun. 29, 2024

Accepted: May. 29, 2025

Published Online: May. 29, 2025

The Author Email:

DOI:10.1088/2631-7990/ad94b8

Topics