Laser & Optoelectronics Progress, Volume. 57, Issue 18, 182802(2020)

Hyperspectral Image Classification Combined with Convolutional Neural Network and Sparse Coding

Jinguang Sun1, Yanbei Li1,2、*, Xian Wei2, and Wanli Wang1,2
Author Affiliations
  • 1College of Electronic and Information Engineering, Liaoning University of Engineering and Technology, Huludao, Liaoning 125100 China
  • 2Quanzhou Institute of Equipment Manufacturing Haixi Institutes, Chinese Academy of Sciences, Quanzhou, Fujian 362000, China
  • show less
    Figures & Tables(14)
    Structure diagram of residual module
    Structure of hyperspectral image classification combined with convolutional neural network and sparse coding
    Indian Pines dataset and label drawing
    Salinas dataset and label diagram
    Pavia University dataset and label diagram
    Classification of each algorithm in Indian Pines dataset. (a) Lable; (b) RBF-SVM; (c) Se-2D-CNN; (d) 3D-CNN; (e) SSC; (f) SOMP; (g) our algorithm
    Classification of each algorithm in Salinas dataset. (a) Lable; (b) RBF-SVM; (c) Se-2D-CNN; (d) 3D-CNN; (e) SSC; (f) SOMP; (g) our algorithm
    Classification of each algorithm in Pavia University dataset. (a) Lable; (b) FBF-SVM; (c) Se-2D-CNN; (d) 3D-CNN; (e) SSC; (f) SOMP; (g) our algorithm
    • Table 1. Quantity of training and test samples in Indian Pines dataset

      View table

      Table 1. Quantity of training and test samples in Indian Pines dataset

      LabelClassSample quantity
      TrainingTest
      1Alfalfa937
      2Corn-no2851143
      3Corn-min166664
      4Corn47190
      5Grass/pasture97386
      6Grass/trees146584
      7G/pasture-mo622
      8Hay-win96382
      9Oats416
      10Soy-no194778
      11Soy-min4911964
      12Soy-cle118475
      13Wheat41164
      14Woods2531012
      15BGTD77309
      16SST1974
      Total-20498200
    • Table 2. Quantity of training and test samples in Salinas dataset

      View table

      Table 2. Quantity of training and test samples in Salinas dataset

      LabelClassSample quantity
      TrainingTest
      1Brocoli-gw-14021607
      2Brocoli-gw-27452981
      3Fallow3951581
      4Fallow-rp2791115
      5Fallow-sm5362142
      6Stubble7923167
      7Celery7162863
      8Grapes-un22549017
      9Soil-vd12404963
      10CSGW6562622
      11Lettuce-ro-4wk214854
      12Lettuce-ro-5wk3851542
      13Lettuce-ro-6wk183733
      14Lettuce-ro-7wk214856
      15Vinyard-un14535815
      16Vinyard-vt3611446
      Total-1082543304
    • Table 3. Quantity of training and test sample in Pavia University dataset

      View table

      Table 3. Quantity of training and test sample in Pavia University dataset

      LabelClassSample quantity
      TrainingTest
      1Asphalt13265305
      2Meadows373014919
      3Gravel4201679
      4Trees6132451
      5Painted-ms2691076
      6Bare Soil10064023
      7Bitumen2691064
      8Self-b Bricks7362946
      9Shadows189758
      Total-855534221
    • Table 4. Classification accuracy of each algorithm in Indian Pines dataset

      View table

      Table 4. Classification accuracy of each algorithm in Indian Pines dataset

      LabelClassification accuracy /%
      RBF-SVMSe-2D-CNN3D-CNNSSCSOMPOurs
      149.5857.7270.3155.4286.8899.94
      278.3688.7482.0274.9093.7895.38
      364.6081.8989.8860.9191.8497.65
      460.0577.4297.2348.3393.4899.82
      594.0395.6894.5691.5992.4898.33
      696.0998.4399.3095.5499.2399.59
      761.3077.5693.6524.3551.7498.67
      898.7395.0199.9999.2799.9598.56
      942.2257.5454.557.783.3399.99
      1060.1485.0296.2364.0287.2299.83
      1187.3988.4198.9782.2797.3599.78
      1273.0671.3393.3674.2687.6398.56
      1399.3297.9198.3299.2698.2698.93
      1496.9197.3799.6795.6498.5499.33
      1554.3091.4597.8258.9897.4699.79
      1690.8290.3097.3591.6596.0097.72
      OA /%81.6888.9397.2479.6194.6498.94
      AA /%75.4384.4991.3270.2685.9598.89
      Kappa0.7860.8730.9570.7640.9380.981
    • Table 5. Classification accuracy of each algorithm in Salinas dataset

      View table

      Table 5. Classification accuracy of each algorithm in Salinas dataset

      LabelClassification accuracy /%
      RBF-SVMSe-2D-CNN3D-CNNSSCSOMPOurs
      198.5499.9998.8499.6899.9899.99
      299.0699.9997.0799.4998.7899.99
      393.7699.3099.9793.1293.8799.92
      499.2299.8299.0499.4198.5599.74
      597.9399.8499.7298.5691.7499.95
      699.7699.9999.7499.7599.9799.99
      799.5399.9199.9699.7399.9899.99
      888.5091.0094.2677.8697.4099.97
      999.5199.9999.9699.8199.9499.99
      1093.9298.3298.8194.7196.0199.82
      1195.3597.6599.5896.2399.4798.73
      1289.9699.0699.5699.6091.8199.74
      1398.2899.3199.1399.3587.2099.99
      1494.4998.6698.6694.9794.2299.78
      1562.5876.1399.3663.5767.2599.96
      1698.2498.7399.1598.5499.6299.92
      OA /%91.3495.9598.8789.4993.4898.99
      AA /%94.5997.1798.9394.6594.7499.78
      Kappa0.9030.9550.9870.8820.9260.988
    • Table 6. Classification accuracy of each algorithm in Pavia University dataset

      View table

      Table 6. Classification accuracy of each algorithm in Pavia University dataset

      LabelClassification accuracy /%
      RBF-SVMSe-2D-CNN3D-CNNSSCSOMPOurs
      181.7698.1398.5284.6280.3998.15
      284.9183.4998.9184.0092.7599.78
      376.6198.3698.8475.5594.9199.54
      496.0877.8597.9894.8595.2699.57
      599.5799.9399.9899.6299.9499.80
      683.1691.9398.4684.8685.2999.97
      789.6598.3099.4578.2499.2797.26
      881.7992.1495.7668.3987.3498.21
      997.9989.2196.4897.9885.1498.93
      OA /%85.2098.8298.9483.8789.2199.01
      AA /%87.9592.2796.6185.4591.1199.05
      Kappa0.8100.9840.9860.7930.8580.988
    Tools

    Get Citation

    Copy Citation Text

    Jinguang Sun, Yanbei Li, Xian Wei, Wanli Wang. Hyperspectral Image Classification Combined with Convolutional Neural Network and Sparse Coding[J]. Laser & Optoelectronics Progress, 2020, 57(18): 182802

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Remote Sensing and Sensors

    Received: Dec. 30, 2019

    Accepted: Feb. 10, 2020

    Published Online: Sep. 2, 2020

    The Author Email: Yanbei Li (13147887613@163.com)

    DOI:10.3788/LOP57.182802

    Topics