Chinese Journal of Liquid Crystals and Displays, Volume. 38, Issue 1, 104(2023)

Point cloud denoising method based on image segmentation

Jia-le LONG1, Zi-hao DU1, Jian-min ZHANG1、*, Fu-jian CHEN2, Hao-yuan GUAN1, Ke-sen HUANG1, and Rui SUN1
Author Affiliations
  • 1Faculty of Intelligent Manufacturing,Wuyi University,Jiangmen 529000,China
  • 2Beijing Xiaomi Mobile Software Co.,Ltd.,Shenzhen 518054,China
  • show less
    Figures & Tables(22)
    Principle diagram of three-dimensional shape measurement based on dual-wavelength fringe projection
    Schematic of point cloud denoising method based on image segmentation
    Schematic diagram of location judgment of undetermined area and reference area
    Flow chart of region segmentation to determine noise region
    MATLAB simulation interface
    Object 1 and its reconstructed 3D point cloud
    Point cloud denoising experiment of object 1
    Schematic diagram of the process of regional growth
    Diagram of object 1 point cloud mapping image segmentation
    Object 2 and its reconstructed 3D point cloud
    Point cloud denoising experiment of object 2
    Object 3 and its reconstructed 3D point cloud
    Point cloud denoising experiment of object 3
    • Table 1. Image segmentation result of object 1

      View table
      View in Article

      Table 1. Image segmentation result of object 1

      区域分类区域数量/个区域面积/pixel
      所有区域95189 121
      无噪声的参考区域3169 811
      分割后的噪声区域663 828
      分割后待定区域2615 482
    • Table 2. Noise region analysis results in the pending region of object 1

      View table
      View in Article

      Table 2. Noise region analysis results in the pending region of object 1

      参考区域序号参考区域深度值Z2待定区域深度值Z1欧氏距离D是否为噪声区域
      1159.818 3215.272 755.454 4
      2144.241 175.346 568.894 6
      3143.559 6-4.577 1148.136 7
      4158.726 292.736 065.990 2
      5160.997 114.606 1146.391 0
      6151.417 2208.560 857.143 6
      7205.179 8147.161 158.018 7
      8181.190 1118.275 762.914 4
      9138.865 6197.095 458.229 8
      10147.426 480.324 767.101 7
      11183.524 4184.737 31.212 9
      12167.690 2222.436 254.746 0
      13147.950 880.241 167.709 7
      14150.068 9206.895 656.826 7
      15156.919 789.304 867.614 9
      16184.347 549.567 6134.779 9
      17161.378 096.476 564.901 5
      18181.561 9234.080 352.518 4
      19152.544 8208.501 055.956 2
      20172.023 5225.655 653.632 1
      21151.583 1207.749 256.166 1
      22153.093 86.480 2146.613 6
      23155.636 588.337 067.299 5
      24212.872 6156.054 256.818 4
      25153.356 1209.507 856.151 7
      26142.632 794.418 648.214 1
    • Table 3. Denoising effect of object 1

      View table
      View in Article

      Table 3. Denoising effect of object 1

      去噪比较参数本文所提方法半径滤波算法体素滤波算法文献[20]所提算法
      去噪点云数量/pixel169 854187 94090 878167 795
      去噪时间/s0.9540.7550.0810.909
      P1/pixel169 811167 85712 702167 736
      P2/pixel4320 08378 17660
      Q/%99.97489.31413.97799.964
    • Table 4. Image segmentation result of object 2

      View table
      View in Article

      Table 4. Image segmentation result of object 2

      区域分类区域数量/个区域面积/pixel
      所有区域44153 489
      无噪声的参考区域1142 435
      分割后的噪声区域245 531
      分割后待定区域195 223
    • Table 5. Noise region analysis results in the pending region of object 2

      View table
      View in Article

      Table 5. Noise region analysis results in the pending region of object 2

      参考区域序号参考区域深度值Z2待定区域深度值Z1欧氏距离D是否为噪声区域
      187.956 3214.845 6126.889 3
      272.970 7195.816 2122.845 5
      3159.195 546.145 4113.050 1
      4161.944 1308.982 3147.038 2
      5181.188 8331.732 3150.543 5
      6244.452 3114.121 1130.331 2
      7210.227 286.303 6123.923 6
      850.125 9143.183 993.058 0
      9168.068 5317.413 3149.344 8
      10164.477 349.584 0114.893 3
      11191.471 8346.683 9155.212 1
      12228.729 9101.040 1127.689 8
      13262.979 7128.326 2134.653 5
      14234.222 7401.880 4167.657 7
      15181.577 2331.502 1149.924 9
      16190.888 670.496 3120.392 3
      1749.100 744.079 35.021 4
      18169.123 6317.352 8148.229 2
      1955.677 4172.789 0117.111 6
    • Table 6. Denoising effect of object 2

      View table
      View in Article

      Table 6. Denoising effect of object 2

      去噪比较参数本文所提方法半径滤波算法体素滤波算法文献[20]所提算法
      去噪点云数量/pixel143 182158 42876 608141 446
      去噪时间/s0.9050.6210.0700.896
      P1/pixel142 435140 79610 704140 634
      P2/pixel74717 63265 904812
      Q/%99.43688.87113.97299.426
    • Table 7. Image segmentation result of object 3

      View table
      View in Article

      Table 7. Image segmentation result of object 3

      区域分类区域数量/个区域面积/pixel
      所有区域22120 613
      无噪声的参考区域1112 871
      分割后的噪声区域91 423
      分割后待定区域126 319
    • Table 8. Noise region analysis results in the pending region of object 3

      View table
      View in Article

      Table 8. Noise region analysis results in the pending region of object 3

      参考区域序号参考区域深度值Z2待定区域深度值Z1欧氏距离D是否为噪声区域
      193.798 9-4.994 998.793 8
      263.862 6176.253 3112.390 7
      35.103 3106.992 2101.888 9
      45.946 488.094 582.148 1
      5-11.777 485.561 597.338 9
      6-12.030 272.359 284.389 4
      782.316 5203.897 7121.581 2
      8126.799 535.294 491.505 1
      9200.582 4356.998 5156.416 1
      1079.323 274.390 44.932 8
      11178.757 3329.011 4150.254 1
      12-0.441 181.474 981.916 0
    • Table 9. Denoising effect of object 3

      View table
      View in Article

      Table 9. Denoising effect of object 3

      去噪比较参数本文所提方法半径滤波算法体素滤波算法文献[20]所提算法
      去噪点云数量/pixel112 934124 96060 432111 565
      去噪时间/s0.8750.5740.0580.862
      P1/pixel112 871119 17410 309111 495
      P2/pixel63578650 12370
      Q/%99.94495.37017.05999.937
    Tools

    Get Citation

    Copy Citation Text

    Jia-le LONG, Zi-hao DU, Jian-min ZHANG, Fu-jian CHEN, Hao-yuan GUAN, Ke-sen HUANG, Rui SUN. Point cloud denoising method based on image segmentation[J]. Chinese Journal of Liquid Crystals and Displays, 2023, 38(1): 104

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Research Articles

    Received: May. 17, 2022

    Accepted: --

    Published Online: Feb. 20, 2023

    The Author Email: Jian-min ZHANG (zjm99_2001@126.com)

    DOI:10.37188/CJLCD.2022-0171

    Topics