Chinese Journal of Lasers, Volume. 50, Issue 5, 0510001(2023)

Analysis of Receiving Beam Broadening and Detection Range of LiDAR Based on Diffractive Optical System

Jinghan Gao1,2, Daojing Li1、*, Kai Zhou1,2, Anjing Cui1,2, Jiang Wu1,2, Yefei Wang2,3, Kai Liu2,3, Songnian Tan3, Yang Gao3, and Yuan Yao3
Author Affiliations
  • 1National Key Laboratory of Microwave Imaging Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China
  • 2School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
  • 3Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, Jilin, China
  • show less
    References(14)

    [1] Hancock S, McGrath C, Lowe C et al. Requirements for a global lidar system: spaceborne lidar with wall-to-wall coverage[J]. Royal Society Open Science, 8, 211166(2021).

    [2] Zhu J Y, Xie Y J. Large aperture diffractive telescope design for space-based lidar receivers[J]. Proceedings of SPIE, 9795, 979508(2015).

    [3] McGrath C, Lowe C, MacDonald M H et al. Investigation of very low Earth orbits (VLEOs) for global spaceborne lidar[J]. CEAS Space Journal, 14, 625-636(2022).

    [4] Beck S M, Buck J R, Buell W F et al. Synthetic-aperture imaging laser radar: laboratory demonstration and signal processing[J]. Applied Optics, 44, 7621-7629(2005).

    [5] Li D J, Hu X. Optical system and detection range analysis of synthetic aperture ladar[J]. Journal of Radars, 7, 263-274(2018).

    [6] Li D J, Hu X, Zhou K et al. Synthetic aperture lidar imaging detection based on conformal diffractive optical system[J]. Acta Optica Sinica, 40, 0428001(2020).

    [7] Xu X W, Gao S, Zhang Z H. Inverse synthetic aperture ladar demonstration and outdoor experiments[C](2018).

    [8] Waller D, Campbell L, Domber J L et al. MOIRE primary diffractive optical element structure deployment testing[C], 1836(2015).

    [9] Du J B, Li D J, Ma M et al. Vibration estimation and imaging of airborne synthetic aperture ladar based on interferometry processing[J]. Chinese Journal of Lasers, 43, 0910003(2016).

    [10] Tan Q L. The application of quadrant photodetector module on laser guidance technology[J]. Semiconductor Optoelectronics, 26, 155-157(2005).

    [11] Li D J, Gao J H, Cui A J et al. Research on space-borne dual-wavelength land-sea LiDAR system with 2 m diffractive aperture[J]. Chinese Journal of Lasers, 49, 0310001(2022).

    [12] Li D J, Zhou K, Cui A J et al. Multi-channel inverse synthetic aperture ladar imaging detection technology and experimental research[J]. Laser & Optoelectronics Progress, 58, 1811017(2021).

    [13] Li Y P, Xing M D, Bao Z. Improved phase gradient autofocus algorithm based on adaptive isolated scatter selection[J]. Journal of Xidian University, 34, 386-391, 427(2007).

    [14] Sun P J, Gao W, Wang Y F. Calculation and application of laser radar cross section for targets[J]. Infrared and Laser Engineering, 35, 597-600, 607(2006).

    Tools

    Get Citation

    Copy Citation Text

    Jinghan Gao, Daojing Li, Kai Zhou, Anjing Cui, Jiang Wu, Yefei Wang, Kai Liu, Songnian Tan, Yang Gao, Yuan Yao. Analysis of Receiving Beam Broadening and Detection Range of LiDAR Based on Diffractive Optical System[J]. Chinese Journal of Lasers, 2023, 50(5): 0510001

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: remote sensing and sensor

    Received: Mar. 11, 2022

    Accepted: May. 25, 2022

    Published Online: Feb. 14, 2023

    The Author Email: Daojing Li (lidj@mail.ie.ac.cn)

    DOI:10.3788/CJL220658

    Topics