Journal of Innovative Optical Health Sciences, Volume. 17, Issue 5, 2430004(2024)
Exhaustive review of acceleration strategies for Monte Carlo simulations in photon transit
[1] M. E. Newman, G. T. Barkema. Monte Carlo Methods in Statistical Physics(1999).
[2] B. C. Wilson, G. Adam. A Monte Carlo model for the absorption and flux distributions of light in tissue. Med. Phys., 10, 824-830(1983).
[3] L. Wang, S. L. Jacques, L. Zheng. MCML—Monte Carlo modeling of light transport in multi-layered tissues. Comput. Methods Programs Biomed., 47, 131-146(1995).
[4] S. T. Flock, M. S. Patterson, B. C. Wilson, D. R. Wyman. Monte Carlo modeling of light propagation in highly scattering tissues. I. Model predictions and comparison with diffusion theory. IEEE Trans. Biomed. Eng., 36, 1162-1168(1989).
[5] T. J. Farrell, M. S. Patterson, B. Wilson. A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo. Med. Phys., 19, 879-888(1992).
[6] S. T. Flock, B. C. Wilson, M. S. Patterson. Monte Carlo modeling of light propagation in highly scattering tissues. II. Comparison with measurements in phantoms. IEEE Trans. Biomed. Eng., 36, 1169-1173(1989).
[7] C. Zhu, Q. Liu. Review of Monte Carlo modeling of light transport in tissues. J. Biomed. Opt., 18, 50902(2013).
[8] J.-M. Maarek, G. Jarry, B. de Cosnac, A. Lansiart. A simulation method for the study of laser transillumination of biological tissues. Ann. Biomed. Eng., 12, 281-304(1984).
[9] Q. Liu, C. Zhu, N. Ramanujam. Experimental validation of Monte Carlo modeling of fluorescence in tissues in the UV-visible spectrum. J. Biomed. Opt., 8, 223-236(2003).
[10] J. Swartling, A. Pifferi, A. M. Enejder, S. Andersson-Engels. Accelerated Monte Carlo models to simulate fluorescence spectra from layered tissues. J. Opt. Soc. Am. A, 20, 714-727(2003).
[11] P. Van der Zee, D. T. Delpy. Simulation of the Point Spread Function for Light in Tissue by a Monte Carlo Method(1987).
[12] S. Avrillier, E. Tinet, E. Delettre. Monte Carlo simulation of collimated beam transmission through turbid media. J. Phys., 51, 2521-2542(1990).
[13] Y. Hasegawa, Y. Yamada, M. Tamura, Y. Nomura. Monte Carlo simulation of light transmission through living tissues. Appl. Opt., 30, 4515-4520(1991).
[14] G. Zaccanti. Monte Carlo study of light propagation in optically thick media: Point source case. Appl. Opt., 30, 2031-2041(1991).
[15] H. Key, E. Davies, P. Jackson, P. Wells. Monte Carlo modelling of light propagation in breast tissue. Phys. Med. Biol., 36, 591-602(1991).
[16] P. K. Yalavarthy et al. Experimental investigation of perturbation Monte-Carlo based derivative estimation for imaging low-scattering tissue. Opt. Express, 13, 985-997(2005).
[17] T. J. Pfefer, K. T. Schomacker, M. N. Ediger, N. S. Nishioka. Light propagation in tissue during fluorescence spectroscopy with single-fiber probes. IEEE J. Sel. Top. Quantum Electron., 7, 1004-1012(2001).
[18] T. J. Pfefer et al. A three-dimensional modular adaptable grid numerical model for light propagation during laser irradiation of skin tissue. IEEE J. Sel. Top. Quantum Electron., 2, 934-942(1996).
[19] D. A. Boas, J. P. Culver, J. J. Stott, A. K. Dunn. Three dimensional Monte Carlo code for photon migration through complex heterogeneous media including the adult human head. Opt. Express, 10, 159-170(2002).
[20] S. V. Patwardhan, A. P. Dhawan, P. A. Relue. Monte Carlo simulation of light-tissue interaction: three-dimensional simulation for trans-illumination-based imaging of skin lesions. IEEE Trans. Biomed. Eng., 52, 1227-1236(2005).
[21] H. Li et al. A mouse optical simulation environment (MOSE) to investigate bioluminescent phenomena in the living mouse with the Monte Carlo method. Acad. Radiol., 11, 1029-1038(2004).
[22] E. Margallo-Balbás, P. J. French. Shape based Monte Carlo code for light transport in complex heterogeneous tissues. Opt. Express, 15, 14086-14098(2007).
[23] N. Ren et al. GPU-based Monte Carlo simulation for light propagation in complex heterogeneous tissues. Opt. Express, 18, 6811-6823(2010).
[24] H. Shen, G. Wang. A tetrahedron-based inhomogeneous Monte Carlo optical simulator. Phys. Med. Biol., 55, 947-962(2010).
[25] Q. Fang. Mesh-based Monte Carlo method using fast ray-tracing in Plücker coordinates. Biomed. Opt. Express, 1, 165-175(2010).
[26] B. Luo, S. He. An improved Monte Carlo diffusion hybrid model for light reflectance by turbid media. Opt. Express, 15, 5905-5918(2007).
[27] S. T. Flock, B. C. Wilson, M. S. Patterson. Hybrid Monte Carlo-Diffusion Theory Modelling of Light Distributions in Tissue(1988).
[28] L. Wang, S. L. Jacques. Hybrid model of Monte Carlo simulation and diffusion theory for light reflectance by turbid media. J. Opt. Soc. Am. A, 10, 1746-1752(1993).
[29] S. Yan, R. Yao, X. Intes, Q. Fang. Accelerating Monte Carlo modeling of structured-light-based diffuse optical imaging via “photon sharing”. Opt. Lett., 45, 2842-2845(2020).
[30] M. Mirzapour et al. Fast Monte-Carlo photon transport employing GPU-based parallel computation. IEEE Trans. Radiat. Plasma Med. Sci., 4, 450-460(2020).
[31] Y. Liao et al. GPU-accelerated Monte Carlo simulation for a single-photon underwater Lidar. Remote Sens., 15, 5245(2023).
[32] M. Shi et al. GPU-accelerated Monte Carlo simulation of MV-CBCT. Phys. Med. Biol., 65, 235042(2020).
[33] B. Ma et al. Scatter correction based on GPU-accelerated full Monte Carlo simulation for brain PET/MRI. IEEE Trans. Med. Imaging, 39, 140-151(2019).
[34] E. P. LaRochelle, P. Arce, B. W. Pogue. “Monte Carlo modeling photon-tissue interaction using on-demand cloud infrastructure,”(2020).
[35] P. Brantley et al. A New Implicit Monte Carlo Thermal Photon Transport Capability Developed Using Shared Monte Carlo Infrastructure(2019).
[36] Y. Lai et al. gPET: A GPU-based, accurate and efficient Monte Carlo simulation tool for PET. Phys. Med. Biol., 64, 245002(2019).
[37] Y. Afsharnejad. Accelerating 3D Monte Carlo Photonic Simulations on Tightly Coupled CPU-FPGA Systems(2019).
[38] M. Preston, P. Marciniewski, P.-E. Tegnér. FPGA-based algorithms for feature extraction in the PANDA shashlyk calorimeter. J. Instrum., 15, C08011(2020).
[39] Y. S. Abhyankar et al. Monte Carlo Processing on a Chip (MCoaC)-preliminary experiments toward the realization of optimal-hardware for TOPAS/Geant4 to drive discovery. Phys. Med., 64, 166-173(2019).
[40] M. R. Ostermeyer, S. L. Jacques. Perturbation theory for diffuse light transport in complex biological tissues. J. Opt. Soc. Am. A, 14, 255-261(1997).
[41] A. Sassaroli, F. Martelli. Convergence Features of Four Monte Carlo Methods in the Time Domain(2013).
[42] A. Sassaroli et al. Monte Carlo procedure for investigating light propagation and imaging of highly scattering media. Appl. Opt., 37, 7392-7400(1998).
[43] C. K. Hayakawa et al. Perturbation Monte Carlo methods to solve inverse photon migration problems in heterogeneous tissues. Opt. Lett., 26, 1335-1337(2001).
[44] J. S. Hendricks, T. E. Booth. MCNP Variance Reduction Overview(2006).
[45] T. Li, H. Gong, Q. Luo. MCVM: Monte Carlo modeling of photon migration in voxelized media. J. Innov. Opt. Health Sci., 3, 91-102(2010).
[46] R. Graaff et al. Condensed Monte Carlo simulations for the description of light transport. Appl. Opt., 32, 426-434(1993).
[47] A. Kienle, M. S. Patterson. Determination of the optical properties of turbid media from a single Monte Carlo simulation. Phys. Med. Biol., 41, 426-434(1996).
[48] A. Pifferi, P. Taroni, G. Valentini, S. Andersson-Engels. Real-time method for fitting time-resolved reflectance and transmittance measurements with a Monte Carlo model. Appl. Opt., 37, 2774-2780(1998).
[49] A. Sassaroli. Fast perturbation Monte Carlo method for photon migration in heterogeneous turbid media. Opt. Lett., 36, 2095-2097(2011).
[50] Y. P. Kumar, R. M. Vasu. Reconstruction of optical properties of low-scattering tissue using derivative estimated through perturbation Monte-Carlo method. J. Biomed. Opt., 9, 1002-1012(2004).
[51] R. Yao, X. Intes, Q. Fang. Direct approach to compute Jacobians for diffuse optical tomography using perturbation Monte Carlo-based photon “replay”. Biomed. Opt. Express, 9, 4588-4603(2018).
[52] C. Zhu, Q. Liu. Hybrid method for fast Monte Carlo simulation of diffuse reflectance from a multilayered tissue model with tumor-like heterogeneities. J. Biomed. Opt., 17, 010501(2012).
[53] L. V. Wang. Rapid modeling of diffuse reflectance of light in turbid slabs. J. Opt. Soc. Am. A, 15, 936-944(1998).
[54] G. Alexandrakis, T. J. Farrell, M. S. Patterson. Monte Carlo diffusion hybrid model for photon migration in a two-layer turbid medium in the frequency domain. Appl. Opt., 39, 2235-2244(2000).
[55] T. Hayashi, Y. Kashio, E. Okada. Hybrid Monte Carlo-diffusion method for light propagation in tissue with a low-scattering region. Appl. Opt., 42, 2888-2896(2003).
[56] C. Donner, H. W. Jensen. Rapid simulation of steady-state spatially resolved reflectance and transmittance profiles of multilayered turbid materials. J. Opt. Soc. Am. A, 23, 1382-1390(2006).
[57] E. Tinet, S. Avrillier, J. M. Tualle. Fast semianalytical Monte Carlo simulation for time-resolved light propagation in turbid media. J. Opt. Soc. Am. A, 13, 1903-1915(1996).
[58] S. Chatigny et al. Hybrid Monte Carlo for photon transport through optically thick scattering media. Appl. Opt., 38, 6075-6086(1999).
[59] D. Wu, X. Xu, L. Zhang, S. Wang. A hybrid Monte Carlo model for the energy response functions of X-ray photon counting detectors. Nucl. Instrum. Methods Phys. Res. A: Accel. Spectrom. Detect. Assoc. Equip., 830, 397-406(2016).
[60] S. Yan, Q. Fang. Hybrid mesh and voxel based Monte Carlo algorithm for accurate and efficient photon transport modeling in complex bio-tissues. Biomed. Opt. Express, 11, 6262-6270(2020).
[61] Q. Liu, N. Ramanujam. Sequential estimation of optical properties of a two-layered epithelial tissue model from depth-resolved ultraviolet-visible diffuse reflectance spectra. Appl. Opt., 45, 4776-4790(2006).
[62] N. G. Chen, J. Bai. Estimation of quasi-straightforward propagating light in tissues. Phys. Med. Biol., 44, 1669-1676(1999).
[63] N. Chen. Controlled Monte Carlo method for light propagation in tissue of semi-infinite geometry. Appl. Opt., 46, 1597-1603(2007).
[64] S. Behin-Ain, T. Van Doorn, J. Patterson. An indeterministic Monte Carlo technique for fast time of flight photon transport through optically thick turbid media. Med. Phys., 29, 125-131(2002).
[65] I. T. Lima, A. Kalra, S. S. Sherif. Improved importance sampling for Monte Carlo simulation of time-domain optical coherence tomography. Biomed. Opt. Express, 2, 1069-1081(2011).
[66] I. T. Lima, A. Kalra, H. E. Hernández-Figueroa, S. S. Sherif. Fast calculation of multipath diffusive reflectance in optical coherence tomography. Biomed. Opt. Express, 3, 692-700(2012).
[67] B. Golosio et al. Monte Carlo simulation of X-ray imaging and spectroscopy experiments using quadric geometry and variance reduction techniques. Comput. Phys. Commun., 185, 1044-1052(2014).
[68] J. F. Williamson. Monte Carlo Simulation of Photon Transport Phenomena: Sampling Techniques(2019).
[69] A. Colasanti et al. Multiple processor version of a Monte Carlo code for photon transport in turbid media. Comput. Phys. Commun., 132, 84-93(2000).
[70] E. Alerstam, T. Svensson, S. Andersson-Engels. Parallel computing with graphics processing units for high-speed Monte Carlo simulation of photon migration. J. Biomed. Opt., 13, 060504(2008).
[71] E. Alerstam et al. Next-generation acceleration and code optimization for light transport in turbid media using GPUs. Biomed. Opt. Express, 1, 658-675(2010).
[72] P. Martinsen, J. Blaschke, R. Künnemeyer, R. Jordan. Accelerating Monte Carlo simulations with an NVIDIA graphics processor. Comput. Phys. Commun., 180, 1983-1989(2009).
[73] Q. Fang, D. A. Boas. Monte Carlo simulation of photon migration in 3D turbid media accelerated by graphics processing units. Opt. Express, 17, 20178-20190(2009).
[74] T. S. Leung, S. Powell. Fast Monte Carlo simulations of ultrasound-modulated light using a graphics processing unit. J. Biomed. Opt., 15, 055007(2010).
[75] F. Cai, S. He. Using graphics processing units to accelerate perturbation Monte Carlo simulation in a turbid medium. J. Biomed. Opt., 17, 040502(2012).
[76] J. Cassidy, L. Lilge, V. Betz. FullMonte: A Framework for High-Performance Monte Carlo Simulation of Light Through Turbid Media with Complex Geometry(2013).
[77] T. Young-Schultz, S. Brown, L. Lilge, V. Betz. FullMonteCUDA: A fast, flexible, and accurate GPU-accelerated Monte Carlo simulator for light propagation in turbid media. Biomed. Opt. Express, 10, 4711-4726(2019).
[78] G. Franciosini et al. GPU-accelerated Monte Carlo simulation of electron and photon interactions for radiotherapy applications. Phys. Med. Biol., 68, 044001(2023).
[79] Q. Fang, S. Yan. Graphics processing unit-accelerated mesh-based Monte Carlo photon transport simulations. J. Biomed. Opt., 24, 1-6(2019).
[80] D. Kirkby, D. Delpy. Parallel operation of Monte Carlo simulations on a diverse network of computers. Phys. Med. Biol., 42, 1203-1208(1997).
[81] G. Pratx, L. Xing. Monte Carlo simulation of photon migration in a cloud computing environment with MapReduce. J. Biomed. Opt., 16, 125003(2011).
[82] A. Doronin, I. Meglinski. Peer-to-peer Monte Carlo simulation of photon migration in topical applications of biomedical optics. J. Biomed. Opt., 17, 090504(2012).
[83] W. C. Y. Lo et al. Hardware acceleration of a Monte Carlo simulation for photodynamic therapy treatment planning. J. Biomed. Opt., 14, 014019(2009).
[84] T. Young-Schultz, L. Lilge, S. Brown, V. Betz. Using OpenCL to enable software-like development of an FPGA-accelerated biophotonic cancer treatment simulator. FPGA ‘20: Proc. 2020 ACM/SIGDA Int. Symp. Field-Programmable Gate Array, 86-96(2020).
[85] Q. Liu, N. Ramanujam. Scaling method for fast Monte Carlo simulation of diffuse reflectance spectra from multilayered turbid media. J. Opt. Soc. Am. A, 24, 1011-1025(2007).
Get Citation
Copy Citation Text
Louzhe Xu, Zijie Zhu, Ting Li. Exhaustive review of acceleration strategies for Monte Carlo simulations in photon transit[J]. Journal of Innovative Optical Health Sciences, 2024, 17(5): 2430004
Category: Research Articles
Received: Mar. 5, 2024
Accepted: May. 6, 2024
Published Online: Aug. 8, 2024
The Author Email: Ting Li (t.li619@foxmail.com)