Journal of Terahertz Science and Electronic Information Technology , Volume. 21, Issue 5, 579(2023)

Research progress of Resonant Tunneling Diode THz radiation source

PENGYuxin*, MENGXiong, and MENG Deyun
Author Affiliations
  • [in Chinese]
  • show less
    References(35)

    [5] [5] TSU R,ESAKI L. Tunneling in a finite superlattice[J]. Applied Physics Letter, 1973,22(11):562-564.

    [6] [6] SUGIYAMA H, SUZUKI S, ASADA M. Room-temperature resonant-tunneling-diode terahertz oscillator based on precisely controlled semiconductor epitaxial growth technology[J]. Ntt Technical Review, 2011,9(10):1-7.

    [7] [7] ZHAO P J,CUI H L,WOOLARD D,et al. Simulation of resonant tunneling structures:origin of the I-V hysteresis and plateau-like structure[J]. Journal of Applied Physics, 2000,87(3):1337-1349.

    [9] [9] SUZUKI S,TERANISHI A,HINATA K,et al. Fundamental oscillation up to 831 GHz in GaInAs/AlAs resonant tunneling diode[C]//2009 IEEE International Conference on Indium Phosphide & Related Materials. Newport Beach,CA,USA:IEEE, 2009.

    [10] [10] SUZUKI S, ASADA M, TERANISHI A, et al. Fundamental oscillation of resonant tunneling diodes above 1 THz at room temperature[J]. Applied Physics Letters, 2010,97(24):242102.

    [11] [11] MAEKAWA T,KANAYA H,SUZUKI S,et al. Oscillation up to 1.92 THz in resonant tunneling diode by reduced conduction loss [J]. Applied Physics Express, 2016,9(2):024101.

    [12] [12] LZUMI R,SUZUKI S,ASADA M. 1.98 THz resonant-tunneling-diode oscillator with reduced conduction loss by thick antenna electrode[C]// The 42nd International Conference on Infrared,Millimeter,and Terahertz Waves. Mexico:IEEE, 2017:1-2.

    [13] [13] BEZHKO M, SUZUKI S, ASADA M. Frequency increase in resonant-tunneling diode cavity-type terahertz oscillator by simulation-based structure optimization[J]. Japanese Journal of Applied Physics, 2020,59(3):032004.

    [14] [14] BEZHKO M, SUZUKI S, ASADA M. Analysis of output power characteristics for resonant-tunneling diode terahertz oscillator with cylindrical cavity resonator[J]. Japanese Journal of Applied Physics, 2021,60(12):121002.

    [15] [15] YU X, SUZUKI Y, VAN T M, et al. Highly efficient resonant tunneling diode terahertz oscillator with a split ring resonator[J].IEEE Electron Device Letters, 2021,42(7):982-985.

    [16] [16] FEIGINOV M,SYDLO C,COJOCARI O,et al. Resonant-tunnelling-diode oscillators operating at frequencies above 1.1 THz[J].Applied Physics Letters, 2011,99(23):562.

    [17] [17] LEE J, KIM M, YANG K. A 1.52 THz RTD triple-push oscillator with a mu W-level output power[J]. IEEE Transactions on Terahertz Science and Technology, 2016,6(2):336-340.

    [18] [18] LEE J, KIM M, LEE J. 692 GHz high-efficiency InP-based fundamental RTD oscillator[J]. IEEE Transactions on Terahertz Science and Technology, 2021,11(6):716-719.

    [22] [22] LIN J C, YU S Y, MOHNEY S E. Characterization of low-resistance ohmic contacts to n-and p-type InGaAs[J]. Jourmal of Applied Physics, 2013,114(4):044504-1-8.

    [28] [28] KIKUCHI A, BANNAI R, KISHINO K, et al. AlGaN resonant tunneling diodes grown by rf-MBE[J]. Physica Status Solidi(A), 2001,188(1):187-190.

    [30] [30] ITO S,SUGIYAMA M,NAKANO Y. Fabrication of GaN/AlN resonant tunneling diode structures by MOVPE analysis of nitride quantum well structures[J]. IEICE Technical Report, 2013,113(449):55-59.

    [31] [31] NAGASE M,TOKIZAKI T. Bistability characteristics of GaN/AlN Resonant Tunneling Diodes caused by intersubband transition and electron accumulation in quantum well[J]. IEEE Transactions on Electron Devices, 2014,61(5):1321-1326.

    [33] [33] RACHED A, BHOURI A, SAKR S. Self-consistent vertical transport calculations in Al(x)Ga1-xN/GaN based resonant tunneling diode[J]. Superlattices and Microstructures, 2016(91):37-50.

    [34] [34] AKWURUOHA C N,HU Z. High-power broadband graphene non-Foster circuit enabled class-J GaN HEMT power amplifier[J]. Microwave and Optical Technology Letters, 2018,60(12):3088-3094.

    [35] [35] CORNUELLE E M, GROWDEN T A, STORM D F, et al. Effects of growth temperature on electrical properties of GaN/AlN based resonant tunneling diodes with peak current density up to 1.01 MA/cm2[J]. AIP Advances, 2020,10(5):1-6.

    [36] [36] GROWDEN T A,STORM D F,CORNUELLE E M,et al. Superior growth,yield,repeatability,and switching performance in GaN-based resonant tunneling diodes[J]. Applied Physics Letters, 2020,116(11):1-5.

    [37] [37] ENCOMENDERO J,ISLAM S M,JENA D,et al. Molecular beam epitaxy of polar III-nitride resonant tunneling diodes[J]. Journal of Vacuum Science & Technology A, 2021,39(2):1-9.

    [38] [38] IPSITA S,MAHAPATRA P K,PANCHADHYAYEE P. Optimum device parameters to attain the highest Peak to Valley Current Ratio(PVCR) in Resonant Tunneling Diodes(RTD)[J]. Physica B:Condensed Matter, 2021,611(4):412788.

    [39] [39] ARENAS O,ALAM E A,THEVENOT A,et al. Integration of micro resistance thermometer detectors in AlGaN/GaN devices[J]. IEEE Journal of the Electron Devices Society, 2014,2(6):145-148.

    [40] [40] TENNETI S N, NAHAR N K, VOLAKIS J L. Full-wave modeling of THz RTD-gated GaN HEMTs[J]. Infrared Physics and Technology, 2015,72(1):221-228.

    [41] [41] ZHONG A,SASAKI T,FAN P,et al. Integrated H-2 nano-sensor array on GaN honeycomb nanonetwork fabricated by MEMS-based technology[J]. Sensors and Actuators,B:Chemical, 2018,255(3):2886-2893.

    [42] [42] CHEN Haoran, YANG Linan, LONG Shuang, et al. Reproducibility in the negative differential resistance characteristic of In0.17Al0.83N/GaN resonant tunneling diodes—theoretical investigation[J]. Journal of Applied Physics, 2013,113(19):194509-1-7.

    [43] [43] RONG Taotao, YANG Lin, YANG Linan, et al. Theoretical investigation into negative differential resistance characteristics of resonant tunneling diodes based on lattice-matched and polarization-matched AlInN/GaN heterostructures[J]. Journal of Applied Physics, 2018,123(4):1-9.

    [44] [44] ZHANG Hepeng, XUE Junshuai, FU Yongrui, et al. Demonstration of highly repeatable room temperature negative differential resistance in large area AlN/GaN double-barrier resonant tunneling diodes[J]. Journal of Applied Physics, 2021,129(1):014502-1-10.

    [45] [45] ZHANG Hepeng, XUE Junshuai, SUN Zhipeng, et al. 1 039 kA/cm2 peak tunneling current density in GaN-based resonant tunneling diode with a peak-to-valley current ratio of 1.23 at room temperature on sapphire substrate[J]. Applied Physics Letters, 2021,119(15):153506-1-10.

    [46] [46] YANG Wenlu,YANG Linan,ZHANG Xiaoyu,et al. Room temperature asymmetric negative differential resistance characteristics of AlGaN/GaN resonant tunneling diodes grown by metal-organic chemical vapor deposition[J]. Solid-State Electronics, 2022, 187(1):108195-1-7.

    [47] [47] WANG Ding,SU Juan,CHEN Zhaoying,et al. Repeatable room temperature negative differential resistance in AlN/GaN resonant tunneling diodes grown on sapphire[J]. Advanced Electronic Materials, 2019,5(2):1800651.

    [48] [48] WANG Ding, CHEN Zhiyong, WANG Tingting, et al. Repeatable asymmetric resonant tunneling in AlGaN/GaN double barrier structures grown on sapphire[J]. Applied Physics Letters, 2019,114(7):073503-1-5.

    [49] [49] QIU Haibing, ZHOU Xiangpeng, YANG Wenxian, et al. Bidirectional negative differential resistance in AlN/GaN resonant tunneling diodes grown on freestanding GaN[J]. Applied Physics Letters, 2021,119(6):062108-1-6.

    Tools

    Get Citation

    Copy Citation Text

    PENGYuxin, MENGXiong, MENG Deyun. Research progress of Resonant Tunneling Diode THz radiation source[J]. Journal of Terahertz Science and Electronic Information Technology , 2023, 21(5): 579

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Jun. 5, 2022

    Accepted: --

    Published Online: Jan. 17, 2024

    The Author Email: PENGYuxin (1527737138@qq.com)

    DOI:10.11805/tkyda2022120

    Topics