Acta Optica Sinica, Volume. 42, Issue 3, 0327011(2022)
Generation of Quantum Correlated Photon Pairs by Using Third-Order Nonlinearity in Optical Fibers
[1] Giovannetti V, Lloyd S, Maccone L. Quantum-enhanced measurements: beating the standard quantum limit[J]. Science, 306, 1330-1336(2004).
[2] Scarani V, Bechmann-Pasquinucci H, Cerf N J et al. The security of practical quantum key distribution[J]. Reviews of Modern Physics, 81, 1301-1350(2009).
[3] Georgescu I M, Ashhab S, Nori F. Quantum simulation[J]. Reviews of Modern Physics, 86, 153-185(2014).
[4] Fabre C, Treps N. Modes and states in quantum optics[J]. Reviews of Modern Physics, 92, 035005(2020).
[5] Shih Y. Entangled biphoton source-property and preparation[J]. Reports on Progress in Physics, 66, 1009-1044(2003).
[6] Reid M D, Drummond P D, Bowen W P et al. Colloquium: the Einstein-Podolsky-Rosen paradox: from concepts to applications[J]. Reviews of Modern Physics, 81, 1727-1751(2009).
[7] Kumar P, Vijay P[M]. Fiber-optic quantum information technologies, 829-880(2008).
[8] McMillan A, Huang Y P, Bell B et al. Four-wave mixing in single-mode optical fibers[M]. ∥Migdall A, Polyakov S V, Fan J Y, et al. Experimental methods in the physical sciences. Amsterdam: Elsevier, 411-465(2013).
[9] Wang L J, Hong C K, Friberg S R. Generation of correlated photons via four-wave mixing in optical fibres[J]. Journal of Optics B: Quantum and Semiclassical Optics, 3, 346-352(2001).
[10] Shelby R M, Levenson M D, Perlmutter S H et al. Broad-band parametric deamplification of quantum noise in an optical fiber[J]. Physical Review Letters, 57, 691-694(1986).
[11] Su Y K, He Y, Chen H S et al. Perspective on mode-division multiplexing[J]. Applied Physics Letters, 118, 200502(2021).
[12] Ou Z Y. 1, 1) interferometers: basic principles and applications[J]. APL Photonics, 5, 080902(2020).
[13] Guo X S, Liu N N, Liu Y H et al. Generation of continuous variable quantum entanglement using a fiber optical parametric amplifier[J]. Optics Letters, 41, 653-656(2016).
[14] Li J M, Liu Y H, Huo N et al. Pulsed entanglement measured by parametric amplifier assisted homodyne detection[J]. Optics Express, 27, 30552-30562(2019).
[15] Dong R F, Heersink J, Corney J F et al. Experimental evidence for Raman-induced limits to efficient squeezing in optical fibers[J]. Optics Letters, 33, 116-118(2008).
[16] Giovannetti V, Lloyd S, Maccone L. Quantum-enhanced positioning and clock synchronization[J]. Nature, 412, 417-419(2001).
[17] Nasr M B. Saleh B E A, Sergienko A V, et al. Demonstration of dispersion-canceled quantum-optical coherence tomography[J]. Physical Review Letters, 91, 083601(2003).
[18] Kok P, Munro W J, Nemoto K et al. Linear optical quantum computing with photonic qubits[J]. Reviews of Modern Physics, 79, 135-174(2007).
[19] Grice W P. U’Ren A B, Walmsley I A. Eliminating frequency and space-time correlations in multiphoton states[J]. Physical Review A, 64, 063815(2001).
[20] Garay-Palmett K. McGuinness H J, Cohen O, et al. Photon pair-state preparation with tailored spectral properties by spontaneous four-wave mixing in photonic-crystal fiber[J]. Optics Express, 15, 14870-14886(2007).
[21] Cui L, Li X Y, Zhao N B. Minimizing the frequency correlation of photon pairs in photonic crystal fibers[J]. New Journal of Physics, 14, 123001(2012).
[22] Agrawal G P[M]. Nonlinear fiber optics(2001).
[23] Lewis S A E, Chernikov S V, Taylor J R. Temperature-dependent gain and noise in fiber Raman amplifiers[J]. Optics Letters, 24, 1823-1825(1999).
[24] Alibart O, Fulconis J, Wong G L et al. Photon pair generation using four-wave mixing in a microstructured fibre: theory versus experiment[J]. New Journal of Physics, 8, 67(2006).
[25] Li X Y, Voss P L, Chen J et al. Measurement of co- and cross-polarized Raman spectra in silica fiber for small detunings[J]. Optics Express, 13, 2236-2244(2005).
[26] Lin Q, Yaman F, Agrawal G P. Photon-pair generation in optical fibers through four-wave mixing: role of Raman scattering and pump polarization[J]. Physical Review A, 75, 023803(2007).
[27] Fiorentino M, Voss P L, Sharping J E et al. All-fiber photon-pair source for quantum communications[J]. IEEE Photonics Technology Letters, 14, 983-985(2002).
[28] Li X Y, Chen J, Voss P et al. All-fiber photon-pair source for quantum communications: improved generation of correlated photons[J]. Optics Express, 12, 3737-3744(2004).
[29] Takesue H, Inoue K. 1.5-μm band quantum-correlated photon pair generation in dispersion-shifted fiber: suppression of noise photons by cooling fiber[J]. Optics Express, 13, 7832-7839(2005).
[30] Dyer S D, Stevens M J, Baek B et al. High-efficiency, ultra low-noise all-fiber photon-pair source[J]. Optics Express, 16, 9966-9977(2008).
[31] Li X Y, Liang C, Lee K F et al. Integrable optical-fiber source of polarization-entangled photon pairs in the telecom band[J]. Physical Review A, 73, 052301(2006).
[32] Li X Y, Zhang X T, Wang K et al. A portable all-fiber source of quantum-correlated photon-pairs[J]. Acta Optica Sinica, 33, 0927003(2013).
[33] Sharping J E, Chen J, Li X Y et al. Quantum-correlated twin photons from microstructure fiber[J]. Optics Express, 12, 3086-3094(2004).
[34] Hall M A, Altepeter J B, Kumar P. Drop-in compatible entanglement for optical-fiber networks[J]. Optics Express, 17, 14558-14566(2009).
[35] Rarity J, Fulconis J D, Duligall J et al. Photonic crystal fiber source of correlated photon pairs[J]. Optics Express, 13, 534-544(2005).
[36] Fulconis J, Alibart O, Wadsworth W J et al. High brightness single mode source of correlated photon pairs using a photonic crystal fiber[J]. Optics Express, 13, 7572-7582(2005).
[37] Smith B J, Mahou P, Cohen O et al. Photon pair generation in birefringent optical fibers[J]. Optics Express, 17, 23589-23602(2009).
[38] Cui L, Li X Y, Guo C et al. Generation of correlated photon pairs in micro/nano-fibers[J]. Optics Letters, 38, 5063-5066(2013).
[39] Fan J, Dogariu A, Wang L J. Generation of correlated photon pairs in a microstructure fiber[J]. Optics Letters, 30, 1530-1532(2005).
[40] Chen J, Lee K F, Liang C et al. Fiber-based telecom-band degenerate-frequency source of entangled photon pairs[J]. Optics Letters, 31, 2798-2800(2006).
[41] Cruz-Delgado D, Ramirez-Alarcon R, Ortiz-Ricardo E et al. Fiber-based photon-pair source capable of hybrid entanglement in frequency and transverse mode, controllably scalable to higher dimensions[J]. Scientific Reports, 6, 27377(2016).
[42] Guo C, Su J, Zhang Z Z et al. Generation of telecom-band correlated photon pairs in different spatial modes using few-mode fibers[J]. Optics Letters, 44, 235-238(2019).
[43] Cohen O, Lundeen J S, Smith B J et al. Tailored photon-pair generation in optical fibers[J]. Physical Review Letters, 102, 123603(2009).
[44] Halder M, Fulconis J, Cemlyn B et al. Nonclassical 2-photon interference with separate intrinsically narrowband fibre sources[J]. Optics Express, 17, 4670-4676(2009).
[45] Zhao N B, Yang L, Li X Y. Passive optical switching of photon pairs using a spontaneous parametric fiber loop[J]. Optics Letters, 37, 1220-1222(2012).
[46] Cui L, Su J, Li J M et al. Quantum state engineering by nonlinear quantum interference[J]. Physical Review A, 102, 033718(2020).
[47] Li J M, Su J, Cui L et al. Generation of pure-state single photons with high heralding efficiency by using a three-stage nonlinear interferometer[J]. Applied Physics Letters, 116, 204002(2020).
[48] Su J, Cui L, Li J M et al. Versatile and precise quantum state engineering by using nonlinear interferometers[J]. Optics Express, 27, 20479-20492(2019).
[49] Zou X Y, Wang L J, Mandeɺ L. Violation of classical probability in parametric down-conversion[J]. Optics Communications, 84, 351-354(1991).
[50] Li X Y, Voss P L, Sharping J E et al. Optical-fiber source of polarization-entangled photons in the 1550 nm telecom band[J]. Physical Review Letters, 94, 053601(2005).
[51] Takesue H, Inoue K. Generation of polarization-entangled photon pairs and violation of Bell’s inequality using spontaneous four-wave mixing in a fiber loop[J]. Physical Review A, 70, 031802(2004).
[52] Li X Y, Voss P L, Chen J et al. Storage and long-distance distribution of telecommunications-band polarization entanglement generated in an optical fiber[J]. Optics Letters, 30, 1201-1203(2005).
[53] Lee K F, Chen J, Liang C et al. Generation of high-purity telecom-band entangled photon pairs in dispersion-shifted fiber[J]. Optics Letters, 31, 1905-1907(2006).
[54] Liang C, Lee K F, Levin T et al. Ultra stable all-fiber telecom-band entangled photon-pair source for turnkey quantum communication applications[J]. Optics Express, 14, 6936-6941(2006).
[55] Fan J, Eisaman M D, Migdall A. Bright phase-stable broadband fiber-based source of polarization-entangled photon pairs[J]. Physical Review A, 76, 043836(2007).
[56] Fang B, Cohen O, Lorenz V O. Polarization-entangled photon-pair generation in commercial-grade polarization-maintaining fiber[J]. Journal of the Optical Society of America B, 31, 277-281(2014).
[57] Meyers R E, Karmakar S, Deacon K S et al. Fiber entangled photon pair source connecting telecom to quantum memories[J]. Journal of Physics Communications, 1, 055002(2017).
[58] Lee K, Jung J, Lee J H. Visible wavelength polarization entangled photon-pairs using SFWM in nondegenrate spatial modes[C]∥2021 International Conference on Information and Communication Technology Convergence (ICTC), October 20-22, 2021, Jeju Island, Korea., 262-264(2021).
[59] Takesue H, Inoue K. Generation of 1.5-μm band time-bin entanglement using spontaneous fiber four-wave mixing and planar light-wave circuit interferometers[J]. Physical Review A, 72, 041804(2005).
[60] Takesue H. Long-distance distribution of time-bin entanglement generated in a cooled fiber[J]. Optics Express, 14, 3453-3460(2006).
[61] Sun Q C, Mao Y L, Chen S J et al. Quantum teleportation with independent sources and prior entanglement distribution over a network[J]. Nature Photonics, 10, 671-675(2016).
[62] Li X Y, Yang L, Ma X X et al. All-fiber source of frequency-entangled photon pairs[J]. Physical Review A, 79, 033817(2009).
[63] Zhou Q, Zhang W, Yuan C Z et al. Generation of 1.5 μm discrete frequency-entangled two-photon state in polarization-maintaining fibers[J]. Optics Letters, 39, 2109-2112(2014).
[64] Shamsshooli A, Guo C, Parmigiani F et al. Progress toward spatially-entangled photon-pair generation in a few-mode fiber[J]. IEEE Photonics Technology Letters, 33, 864-867(2021).
[65] Chen J, Fan J Y, Eisaman M D et al. Generation of high-flux hyperentangled photon pairs using a microstructure-fiber Sagnac interferometer[J]. Physical Review A, 77, 053812(2008).
[66] de la Torre-Robles D, Dominguez-Serna F, Osorio G L et al. Frequency and polarization emission properties of a photon-pair source based on a photonic crystal fiber[J]. Scientific Reports, 11, 18092(2021).
[67] Weedbrook C, Pirandola S, García-Patrón R et al. Gaussian quantum information[J]. Reviews of Modern Physics, 84, 621-669(2012).
[68] Larsen M V, Guo X S, Breum C R et al. Deterministic generation of a two-dimensional cluster state[J]. Science, 366, 369-372(2019).
[69] Zhong H S, Wang H, Deng Y H et al. Quantum computational advantage using photons[J]. Science, 370, 1460-1463(2020).
[70] Ra Y S, Dufour A, Walschaers M et al. Non-Gaussian quantum states of a multimode light field[J]. Nature Physics, 16, 144-147(2020).
[71] Peng K C, Jia X J, Su X L et al. Optical manipulations of quantum states with continuous variables[J]. Acta Optica Sinica, 31, 0900107(2011).
[72] Sun Y R, Huo M R, Yan Z H et al. Quantum teleportation based on four-partite entangled states[J]. Acta Optica Sinica, 38, 0527001(2018).
[73] Brecht B, Reddy D V, Silberhorn C et al. Photon temporal modes: a complete framework for quantum information science[J]. Physical Review X, 5, 041017(2015).
[74] Huo N, Liu Y H, Li J M et al. Direct temporal mode measurement for the characterization of temporally multiplexed high dimensional quantum entanglement in continuous variables[J]. Physical Review Letters, 124, 213603(2020).
Get Citation
Copy Citation Text
Shengjie Zhu, Liang Cui, Xiaoying Li. Generation of Quantum Correlated Photon Pairs by Using Third-Order Nonlinearity in Optical Fibers[J]. Acta Optica Sinica, 2022, 42(3): 0327011
Category: Quantum Optics
Received: Dec. 17, 2021
Accepted: Jan. 11, 2022
Published Online: Jan. 24, 2022
The Author Email: Li Xiaoying (xiaoyingli@tju.edu.cn)