Chinese Optics Letters, Volume. 19, Issue 12, 121701(2021)
Recognizing local artifacts in two-photon imaging of dendrites beneath blood vessels in vivo
[1] D. Wang, J. Xia. Optics based biomedical imaging: principles and applications. J. Appl. Phys., 125, 191101(2019).
[2] K. Akassoglou, M. Merlini, V. A. Rafalski, R. Real, L. Liang, Y. Jin, S. E. Dougherty, V. D. Paola, D. J. Linden, T. Misgeld, B. Zheng. In vivo imaging of CNS injury and disease. J. Neurosci., 37, 10808(2017).
[3] Y. Ozeki. Molecular vibrational imaging by stimulated Raman scattering microscopy: principles and applications. Chin. Opt. Lett., 18, 121702(2020).
[4] L. Zhu, Y. Wang, Y. Yuan, H. Zhou, Y. Zhao, Z. Ma. Spectral domain optical coherence tomography with sub-micrometer sensitivity for measurement of central corneal thickness. Chin. Opt. Lett., 17, 041701(2019).
[5] G. Sancataldo, L. Silvestri, A. L. A. Mascaro, L. Sacconi, F. S. Pavone. Advanced fluorescence microscopy for in vivo imaging of neuronal activity. Optica, 6, 758(2019).
[6] B. A. Wilt, L. D. Burns, E. T. Wei Ho, K. K. Ghosh, E. A. Mukamel, M. J. Schnitzer. Advances in light microscopy for neuroscience. Annu. Rev. Neurosci., 32, 435(2009).
[7] I. Y. Koh, W. B. Lindquist, K. Zito, E. A. Nimchinsky, K. Svoboda. An image analysis algorithm for dendritic spines. Neural. Comput., 14, 1283(2002).
[8] M. U. Ghani, F. Mesadi, S. D. Kanık, A. O. Argunsah, A. F. Hobbiss, I. Israely, D. Unay, T. Tasdizen, M. Cetin. Dendritic spine classification using shape and appearance features based on two-photon microscopy. J. Neurosci. Methods, 279, 13(2017).
[9] M. Li, F. Liu, H. Jiang, T. S. Lee, S. Tang. Long-term two-photon imaging in awake macaque monkey. Neuron, 93, 1049(2017).
[10] Z. Gu, X. Wang, J. Wang, F. Fan, S. Chang. Sidelobe suppression and axial resolution enhancement in 4pi microscopy with higher-order radially polarized Laguerre–Gaussian beams using subtractive imaging. Chin. Opt. Lett., 17, 121103(2019).
[11] J. Zeng, P. Mahou, M.-C. Schanne-Klein, E. Beaurepaire, D. Débarre. 3D resolved mapping of optical aberrations in thick tissues. Biomed. Opt. Express, 3, 1898(2012).
[12] M. J. Booth. Adaptive optics in microscopy. Philos. Trans. A Math. Phys. Eng. Sci., 365, 2829(2007).
[13] F. Helmchen, W. Denk. Deep tissue two-photon microscopy. Nat. Methods, 2, 932(2005).
[14] W. Denk, J. H. Strickler, W. W. Webb. Two-photon laser scanning fluorescence microscopy. Science, 248, 73(1990).
[15] K. Svoboda, R. Yasuda. Principles of two-photon excitation microscopy and its applications to neuroscience. Neuron, 50, 823(2006).
[16] C. Jin, L. Kong, H. Dana, H. Xie, L. Cao, G. Jin, Q. Dai. Advances in point spread function engineering for functional imaging of neural circuits in vivo. J. Phys. D, 53, 383001(2020).
[17] Y. Liu, P. Lai, C. Ma, X. Xu, A. A. Grabar, L. V. Wang. Optical focusing deep inside dynamic scattering media with near-infrared time-reversed ultrasonically encoded (TRUE) light. Nat. Commun., 6, 5904(2015).
[18] R. Horstmeyer, H. Ruan, C. Yang. Guidestar-assisted wavefront-shaping methods for focusing light into biological tissue. Nat. Photon., 9, 563(2015).
[19] N. Ji. Adaptive optical fluorescence microscopy. Nat. Methods, 14, 374(2017).
[20] L. Kong, M. Cui. In vivo deep tissue imaging via iterative multiphoton adaptive compensation technique. IEEE J. Sel. Top. Quantum Electron., 22, 40(2016).
[21] J.-H. Park, W. Sun, M. Cui. High-resolution in vivo imaging of mouse brain through the intact skull. Proc. Natl. Acad. Sci. U.S.A., 112, 9236(2015).
[22] J.-H. Park, L. Kong, Y. Zhou, M. Cui. Large-field-of-view imaging by multi-pupil adaptive optics. Nat. Methods, 14, 581(2017).
[23] P. T. So, C. Y. Dong, B. R. Masters, K. M. Berland. Two-photon excitation fluorescence microscopy. Annu. Rev. Biomed. Eng., 2, 399(2000).
[24] B. Richards, E. Wolf. Electromagnetic diffraction in optical systems. II. Structure of the image field in an aplanatic system. Proc. Roy. Soc. A, 253, 358(1959).
[25] Q. Li. Optimization of point spread function of a high numerical aperture objective lens: application to high resolution optical imaging and fabrication(2014).
[26] M. Born, E. Wolf. Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light(1999).
[27] M. A. Neil, M. J. Booth, T. Wilson. New modal wave-front sensor: a theoretical analysis. J. Opt. Soc. Am. A, 17, 1098(2000).
[28] S. L. Jacques. Optical properties of biological tissues: a review. Phys. Med. Biol., 58, R37(2013).
[29] B. Huang, W. Wang, M. Bates, X. Zhuang. Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy. Science, 319, 810(2008).
[30] M. Tobias, B. A. Gutwein, A. Rohrbach. Light-sheet microscopy in a glass capillary: feedback holographic control for illumination beam correction. Opt. Lett., 42, 350(2017).
[31] R. Turcotte, Y. Liang, N. Ji. Adaptive optical versus spherical aberration corrections for in vivo brain imaging. Biomed. Opt. Express, 8, 3891(2017).
Get Citation
Copy Citation Text
Cheng Jin, Ruheng Shi, Chi Liu, Lingjie Kong, "Recognizing local artifacts in two-photon imaging of dendrites beneath blood vessels in vivo," Chin. Opt. Lett. 19, 121701 (2021)
Category: Biophotonics
Received: Apr. 12, 2021
Accepted: May. 21, 2021
Published Online: Sep. 9, 2021
The Author Email: Lingjie Kong (konglj@tsinghua.edu.cn)