Chinese Journal of Lasers, Volume. 49, Issue 3, 0306001(2022)
Propagation of High-Power Picosecond Pulse at 1064 nm Using Nodeless Anti-Resonant Hollow-Core Fibre
[1] Audouard E, Lopez J, Ancelot B et al. Optimization of surface engraving quality with ultrafast lasers[J]. Journal of Laser Applications, 29, 022210(2017).
[2] Zhou Y Y, Xiao Y C, Sun L J et al. Optical-fiber fluorescent probes[J]. Laser & Optoelectronics Progress, 57, 010003(2020).
[3] Lian Z G, Chen X, Wang X et al. Preparation and potential applications of microstructured and integrated functional optical fibers[J]. Laser & Optoelectronics Progress, 56, 170615(2019).
[4] Smith A V, Do B T. Bulk and surface laser damage of silica by picosecond and nanosecond pulses at 1064 nm[J]. Applied Optics, 47, 4812-4832(2008).
[5] Skuja L, Hosono H, Hirano M. Laser-induced color centers in silica[J]. Proceedings of SPIE, 4347, 155-168(2001).
[6] Mangan B J, Farr L, Langford A et al. Low loss (1.7 dB/km) hollow core photonic bandgap fiber[C], 3.
[7] Wang Y Y, Wheeler N V, Couny F et al. Low loss broadband transmission in hypocycloid-core Kagome hollow-core photonic crystal fiber[J]. Optics Letters, 36, 669-671(2011).
[8] Debord B, Alharbi M, Benoît A et al. Ultra low-loss hypocycloid-core Kagome hollow-core photonic crystal fiber for the green spectral-range applications[C], 1-2(2014).
[9] Yu F, Knight J C. Spectral attenuation limits of silica hollow core negative curvature fiber[J]. Optics Express, 21, 21466-21471(2013).
[10] Gao S F, Wang Y Y, Liu X L et al. Bending loss characterization in nodeless hollow-core anti-resonant fiber[J]. Optics Express, 24, 14801-14811(2016).
[11] Gao S F, Wang Y Y, Ding W et al. Hollow-core conjoined-tube negative-curvature fibre with ultralow loss[J]. Nature Communications, 9, 2828(2018).
[12] Jasion G T, Bradley T D, Harrington K et al. Hollow core NANF with 0.28 dB/km attenuation in the C and L bands[C], 1-3(2020).
[13] Gao S F, Wang Y Y, Wang P. Research progress on hollow-core anti-resonant fiber and gas Raman laser technology[J]. Chinese Journal of Lasers, 46, 0508014(2019).
[14] Xia C M, Zhou G Y. Progress and prospect of microstructured optical fibers[J]. Laser & Optoelectronics Progress, 56, 170603(2019).
[15] Mosley P J, Huang W C, Welch M G et al. Ultrashort pulse compression and delivery in a hollow-core photonic crystal fiber at 540 nm wavelength[J]. Optics Letters, 35, 3589-3591(2010).
[16] Chen Y, Mulvad H C H, Sandoghchi S R et al. First demonstration of low loss, bend insensitive 37-cell hollow-core photonic bandgap fiber at 1 μm for high power delivery applications[C], 1-2(2016).
[17] Michaille L F, Taylor D M, Bennett C R H et al. Damage threshold and bending properties of photonic crystal and photonic band-gap optical fibers[J]. Proceedings of SPIE, 5618, 30-38(2004).
[18] Emaury F, Saraceno C J, Debord B et al. Efficient spectral broadening in the 100-W average power regime using gas-filled kagome HC-PCF and pulse compression[J]. Optics Letters, 39, 6843-6846(2014).
[19] Michieletto M, Lyngsø J K, Jakobsen C et al. Hollow-core fibers for high power pulse delivery[J]. Optics Express, 24, 7103-7119(2016).
[20] Gao S F, Wang Y Y, Liu X L et al. Hollow-core anti-resonant fiber and its use for propagation of high power ultrashort pulse[J]. Chinese Journal of Lasers, 44, 0201012(2017).
Get Citation
Copy Citation Text
Wenju Lu, Xin Zhang, Kuan Zhu, Keming Du, Pu Wang. Propagation of High-Power Picosecond Pulse at 1064 nm Using Nodeless Anti-Resonant Hollow-Core Fibre[J]. Chinese Journal of Lasers, 2022, 49(3): 0306001
Category: fiber optics and optical communications
Received: Apr. 6, 2021
Accepted: Jun. 8, 2021
Published Online: Jan. 18, 2022
The Author Email: Wang Pu (wangpuemail@bjut.edu.cn)