Acta Optica Sinica, Volume. 44, Issue 4, 0424001(2024)
Multi-Frequency and Multi-Beam Tunable Terahertz Coding Metasurface in Full Space
[1] Wu J Y, Xu X F, Wei L F. Active metasurfaces for manipulatable terahertz technology[J]. Chinese Physics B, 29, 094202(2020).
[2] Zhu H Y, Song Z Y. Switchable wavefront of mid-infrared wave using GeSbTe metasurfaces[J]. IEEE Photonics Journal, 14, 2237405(2022).
[3] Dai Y W, Chen C, Gao P et al. 2 bit optically controlled programmable terahertz metasurface based on spatially encoded structured light[J]. Acta Optica Sinica, 43, 1124004(2023).
[4] Cui T J, Wu H T, Liu S. Research progress of information metamaterials[J]. Acta Physica Sinica, 69, 158101(2020).
[5] Hu M X, Wang Z Q, Li X P et al. Metasurface polarization information encoding[J]. Chinese Journal of Lasers, 50, 1813010(2023).
[6] Li X, Xu Z K, Yang J Y et al. Advances in phase imaging based on metasurfaces[J]. Laser & Optoelectronics Progress, 61, 0200003(2024).
[7] Zhang L, Guo J, Ding T Y. Ultrathin dual-mode vortex beam generator based on anisotropic coding metasurface[J]. Scientific Reports, 11, 5766(2021).
[8] Liu S, Cui T J, Xu Q et al. Anisotropic coding metamaterials and their powerful manipulation of differently polarized terahertz waves[J]. Light: Science & Applications, 5, e16076(2016).
[9] Yang L J, Li J S. Terahertz vortex beam generator carrying orbital angular momentum in both transmission and reflection spaces[J]. Optics Express, 30, 36960-36972(2022).
[10] Tang X Y, Ke Y H, Jing X F et al. Free manipulation of terahertz wave based on the transmission type geometric phase coding metasurface[J]. Acta Photonica Sinica, 50, 0116002(2021).
[11] Wang D J, He X J, Jiang J X et al. Photoelectrically-excited terahertz metasurface for switchable and tunable broadband propagation and polarization manipulations[J]. Diamond and Related Materials, 131, 109570(2023).
[12] Hasani H, Tamagnone M, Capdevila S et al. Tri-band, polarization-independent reflectarray at terahertz frequencies: design, fabrication, and measurement[J]. IEEE Transactions on Terahertz Science and Technology, 6, 268-277(2016).
[13] Li J, Zhang Y T, Li J N et al. Amplitude modulation of anomalously reflected terahertz beams using all-optical active Pancharatnam-Berry coding metasurfaces[J]. Nanoscale, 11, 5746-5753(2019).
[14] Xu Q, Su X Q, Zhang X Q et al. Mechanically reprogrammable Pancharatnam-Berry metasurface for microwaves[J]. Advanced Photonics, 4, 016002(2022).
[15] Wan P Q, Wen T L, Zhang H W. Dynamic terahertz modulator based on interaction between metamaterials[J]. Electronic Test, 103-106(2022).
[16] Wang H, Ling F, Zhang B. Tunable metasurfaces for independent control of linearly and circularly polarized terahertz waves[J]. Optics Express, 28, 36316-36326(2020).
[17] Li J S, Li S H, Yao J Q. Actively tunable terahertz coding metasurfaces[J]. Optics Communications, 461, 125186(2020).
[18] Li Y Y, Fang B, Jin Y X et al. Multi-function scattering beam regulation based on the superposition method of geometric phase coded metasurface sequences[J]. Optics Communications, 502, 127405(2022).
[19] Li Z L, Wang W, Deng S X et al. Active beam manipulation and convolution operation in VO2-integrated coding terahertz metasurfaces[J]. Optics Letters, 47, 441-444(2022).
[20] Yan Y, Xie G D, Lavery M P J et al. High-capacity millimetre-wave communications with orbital angular momentum multiplexing[J]. Nature Communications, 5, 4876(2014).
[21] Cheng J, Li W S, Li J S. Multifunctional reflection type anisotropic metasurfaces in the terahertz band[J]. Optical Materials Express, 12, 2003-2011(2022).
[22] Zhang L, Liu S, Cui T J. Theory and application of coding metamaterials[J]. Chinese Optics, 10, 1-12(2017).
[23] Pan Y B, Lan F, Zhang Y X et al. Dual-band multifunctional coding metasurface with a mingled anisotropic aperture for polarized manipulation in full space[J]. Photonics Research, 10, 416-425(2022).
[24] Zhong M, Li J S. Mult-ifunction terahertz wave manipulation utilizing Fourier convolution operation metasurface[J]. Chinese Physics B, 31, 054207(2022).
[25] Sun H Y, Gu C Q, Chen X L et al. Broadband and broad-angle polarization-independent metasurface for radar cross section reduction[J]. Scientific Reports, 7, 40782(2017).
[26] Moccia M, Koral C, Papari G P et al. Suboptimal coding metasurfaces for terahertz diffuse scattering[J]. Scientific Reports, 8, 11908(2018).
[27] Yang J J, Cheng Y Z, Gong R Z. RCS reduction property of random coding metasurface[J]. Electronic Components and Materials, 37, 88-94(2018).
[28] Saifullah Y, Yan G M, Feng X M. A four-leaf clover-shaped coding metasurface for ultra-wideband diffusion-like scattering[J]. Journal of Radars, 10, 382-390(2021).
[29] Han J J, Qian S X, Zhu C M et al. Dual-mode orbital angular momentum generated based on dual-polarization coding metasurface[J]. Acta Physica Sinica, 72, 148101(2023).
[30] Zhang D Q, Tao Y, Pan G M et al. Switchable transmissive and reflective metadevices based on the phase transition of vanadium dioxide[J]. Optics Letters, 47, 6073-6076(2022).
[31] Feng Q Y, Qiu G H, Yan D X et al. Wide and narrow band switchable bi-functional metamaterial absorber based on vanadium dioxide[J]. Chinese Optics, 15, 387-403(2022).
[32] Hu Y Q, Li X, Wang X D et al. Progress of micro-nano fabrication technologies for optical metasurfaces[J]. Infrared and Laser Engineering, 49, 20201035(2020).
[33] Liu X B, Wang Q, Zhang X Q et al. Thermally dependent dynamic meta-holography using a vanadium dioxide integrated metasurface[J]. Advanced Optical Materials, 7, 1900175(2019).
Get Citation
Copy Citation Text
Zhixiong Yang, Jingli Wang, Wenjun Sun, Liang Yin, Xianchao Dong, Hongdan Wan, Heming Chen, Kai Zhong. Multi-Frequency and Multi-Beam Tunable Terahertz Coding Metasurface in Full Space[J]. Acta Optica Sinica, 2024, 44(4): 0424001
Category: Optics at Surfaces
Received: Oct. 8, 2023
Accepted: Dec. 1, 2023
Published Online: Feb. 29, 2024
The Author Email: Wang Jingli (jlwang@njupt.edu.cn)
CSTR:32393.14.AOS231625