Photonics Research, Volume. 9, Issue 11, 2237(2021)

Submegahertz spectral width photon pair source based on fused silica microspheres Editors' Pick

Erasto Ortiz-Ricardo1, Cesar Bertoni-Ocampo1, Mónica Maldonado-Terrón1, Arturo Garcia Zurita1, Roberto Ramirez-Alarcon2, Hector Cruz Ramirez1, R. Castro-Beltrán3,4, and Alfred B. U’Ren1、*
Author Affiliations
  • 1Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Apartado Postal 70-543, 04510 México, D.F., Mexico
  • 2Centro de Investigaciones en Óptica A.C., Loma del Bosque 115, Colonia Lomas del Campestre, 37150 León, Guanajuato, Mexico
  • 3Departamento de Ingeniería Física, Cuerpo Académico de Mécanica Estadística, Divisón de Ciencias e Ingenierías, Universidad de Guanajuato, 37150 León, Guanajuato, Mexico
  • 4e-mail: cbrigoberto@fisica.ugto.mx
  • show less
    References(47)

    [1] N. Gisin, R. Thew. Quantum communication. Nat. Photonics, 1, 165-171(2007).

    [2] P.-A. Moreau, E. Toninelli, T. Gregory, M. J. Padgett. Imaging with quantum states of light. Nat. Rev. Phys., 1, 367-380(2019).

    [3] T. D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, J. L. O Brien. Quantum computers. Nature, 464, 45-53(2010).

    [4] D. C. Burnham, D. L. Weinberg. Observation of simultaneity in parametric production of optical photon pairs. Phys. Rev. Lett., 25, 84-87(1970).

    [5] J. E. Sharping, M. Fiorentino, P. Kumar. Observation of twin-beam-type quantum correlation in optical fiber. Opt. Lett., 26, 367-369(2001).

    [6] G. Moody, L. Chang, T. J. Steiner, J. E. Bowers. Chip-scale nonlinear photonics for quantum light generation. AVS Quantum Sci., 2, 041702(2020).

    [7] Y. Zhao, X. Ji, B. Y. Kim, P. S. Donvalkar, J. K. Jang, C. Joshi, M. Yu, C. Joshi, R. R. Domeneguetti, F. A. S. Barbosa, P. Nussenzveig, Y. Okawachi, M. Lipson, A. L. Gaeta. Visible nonlinear photonics via high-order-mode dispersion engineering. Optica, 7, 135-141(2020).

    [8] A. U’Ren, C. Silberhorn, K. Banaszek, I. Walmsley, R. Erdmann, W. Grice, M. Raymer. Generation of pure-state single-photon wavepackets by conditional preparation based on spontaneous parametric downconversion. Laser Phys., 15, 146-161(2005).

    [9] J. Liu, J. Liu, P. Yu, G. Zhang. Sub-megahertz narrow-band photon pairs at 606 nm for solid-state quantum memories. APL Photon., 5, 066105(2020).

    [10] K. J. Vahala. Optical microcavities. Nature, 424, 839-846(2003).

    [11] X. Ji, F. A. Barbosa, S. P. Roberts, A. Dutt, J. Cardenas, Y. Okawachi, A. Bryant, A. L. Gaeta, M. Lipson. Ultra-low-loss on-chip resonators with sub-milliwatt parametric oscillation threshold. Optica, 4, 619-624(2017).

    [12] X. Shen, R. C. Beltran, V. M. Diep, S. Soltani, A. M. Armani. Low-threshold parametric oscillation in organically modified microcavities. Sci. Adv., 4, eaao4507(2018).

    [13] K. Garay-Palmett, Y. Jeronimo-Moreno, A. B. U’Ren. Theory of cavity-enhanced spontaneous four wave mixing. Laser Phys., 23, 015201(2012).

    [14] C. Reimer, M. Kues, L. Caspani, B. Wetzel, P. Roztocki, M. Clerici, Y. Jestin, M. Ferrera, M. Peccianti, A. Pasquazi, B. E. Little, S. T. Chu, D. J. Moss, R. Morandotti. Cross-polarized photon-pair generation and bi-chromatically pumped optical parametric oscillation on a chip. Nat. Commun., 6, 8236(2015).

    [15] M. Kues, C. Reimer, P. Roztocki, L. R. Cortés, S. Sciara, B. Wetzel, Y. Zhang, A. Cino, S. T. Chu, B. E. Little, D. J. Moss, L. Caspani, J. Azaña, R. Morandotti. On-chip generation of high-dimensional entangled quantum states and their coherent control. Nature, 546, 622-626(2017).

    [16] E. Pomarico, B. Sanguinetti, N. Gisin, R. Thew, H. Zbinden, G. Schreiber, A. Thomas, W. Sohler. Waveguide-based OPO source of entangled photon pairs. New J. Phys., 11, 113042(2009).

    [17] X. Guo, C.-L. Zou, C. Schuck, H. Jung, R. Cheng, H. X. Tang. Parametric down-conversion photon-pair source on a nanophotonic chip. Light Sci. Appl., 6, e16249(2017).

    [18] J. Fürst, D. Strekalov, D. Elser, A. Aiello, U. L. Andersen, C. Marquardt, G. Leuchs. Quantum light from a whispering-gallery-mode disk resonator. Phys. Rev. Lett., 106, 113901(2011).

    [19] M. Förtsch, J. U. Fürst, C. Wittmann, D. Strekalov, A. Aiello, M. V. Chekhova, C. Silberhorn, G. Leuchs, C. Marquardt. A versatile source of single photons for quantum information processing. Nat. Commun., 4, 1818(2013).

    [20] D. Höckel, L. Koch, O. Benson. Direct measurement of heralded single-photon statistics from a parametric down-conversion source. Phys. Rev. A, 83, 013802(2011).

    [21] K.-H. Luo, H. Herrmann, C. Silberhorn. Temporal correlations of spectrally narrowband photon pair sources. Quantum Sci. Technol., 2, 024002(2017).

    [22] D. Grassani, S. Azzini, M. Liscidini, M. Galli, M. J. Strain, M. Sorel, J. Sipe, D. Bajoni. Micrometer-scale integrated silicon source of time-energy entangled photons. Optica, 2, 88-94(2015).

    [23] S. Rogers, D. Mulkey, X. Lu, W. C. Jiang, Q. Lin. High visibility time-energy entangled photons from a silicon nanophotonic chip. ACS Photon., 3, 1754-1761(2016).

    [24] J. A. Jaramillo-Villegas, P. Imany, O. D. Odele, D. E. Leaird, Z.-Y. Ou, M. Qi, A. M. Weiner. Persistent energy–time entanglement covering multiple resonances of an on-chip biphoton frequency comb. Optica, 4, 655-658(2017).

    [25] S. F. Preble, M. L. Fanto, J. A. Steidle, C. C. Tison, G. A. Howland, Z. Wang, P. M. Alsing. On-chip quantum interference from a single silicon ring-resonator source. Phys. Rev. Appl., 4, 021001(2015).

    [26] X. Lu, W. C. Jiang, J. Zhang, Q. Lin. Biphoton statistics of quantum light generated on a silicon chip. ACS Photon., 3, 1626-1636(2016).

    [27] X. Lu, Q. Li, D. A. Westly, G. Moille, A. Singh, V. Anant, K. Srinivasan. Chip-integrated visible–telecom entangled photon pair source for quantum communication. Nat. Phys., 15, 373-381(2019).

    [28] J. W. Silverstone, R. Santagati, D. Bonneau, M. J. Strain, M. Sorel, J. L. O’Brien, M. G. Thompson. Qubit entanglement between ring-resonator photon-pair sources on a silicon chip. Nat. Commun., 6, 7948(2015).

    [29] L. Caspani, C. Reimer, M. Kues, P. Roztocki, M. Clerici, B. Wetzel, Y. Jestin, M. Ferrera, M. Peccianti, A. Pasquazi, L. Razzari, B. E. Little, S. T. Chu, D. J. Moss, R. Morandotti. Multifrequency sources of quantum correlated photon pairs on-chip: a path toward integrated quantum frequency combs. Nanophotonics, 5, 351-362(2016).

    [30] Y. Moreno Jeronimo, S. Rodriguez-Benavides, A. B. U’Ren. Theory of cavity-enhanced spontaneous parametric downconversion. Laser Phys., 20, 1221-1233(2010).

    [31] P. B. Scott, B. Katja, H. Franklyn, J. Vahala, S. A. Diddams. Microresonator frequency comb optical clock. Optica, 1, 10-14(2014).

    [32] T. E. Drake, T. C. Briles, J. R. Stone, D. T. Spencer, D. R. Carlson, D. D. Hickstein, Q. Li, D. Westly, K. Srinivasan, S. A. Diddams, S. B. Papp. Terahertz-rate Kerr-microresonator optical clockwork. Phys. Rev. X, 9, 031023(2019).

    [33] M. Teich, B. Saleh, F. N. C. Wong, J. H. Shapiro. Variations on the theme of quantum optical coherence tomography: a review. Quantum Inf. Process., 11, 903-923(2012).

    [34] A. Graciano, P. Y. Martínez, D. Lopez-Mago, G. Castro-Olvera, M. Rosete-Aguilar, J. Garduño-Mejía, R. R. Alarcón, H. C. Ramírez, A. B. U’Ren. Interference effects in quantum-optical coherence tomography using spectrally engineered photon pairs. Sci. Rep., 9, 8954(2019).

    [35] Y. Wang, J. Li, S. Zhang, K. Su, Y. Zhou, K. Liao, S. Du, H. Yan, S.-L. Zhu. Efficient quantum memory for single-photon polarization qubits. Nat. Photonics, 13, 346-351(2019).

    [36] G. Schunk, U. Vogl, D. V. Strekalov, M. Förtsch, F. Sedlmeir, H. G. Schwefel, M. Göbelt, S. Christiansen, G. Leuchs, C. Marquardt. Interfacing transitions of different alkali atoms and telecom bands using one narrowband photon pair source. Optica, 2, 773-778(2015).

    [37] F. Wolfgramm, Y. A. de Icaza Astiz, F. A. Beduini, A. Cere, M. W. Mitchell. Atom-resonant heralded single photons by interaction-free measurement. Phys. Rev. Lett., 106, 053602(2011).

    [38] M. Rambach, A. Nikolova, T. J. Weinhold, A. G. White. Sub-megahertz linewidth single photon source. APL Photon., 1, 096101(2016).

    [39] Z. Ou, Y. Lu. Cavity enhanced spontaneous parametric down-conversion for the prolongation of correlation time between conjugate photons. Phys. Rev. Lett., 83, 2556-2559(1999).

    [40] O. Slattery, L. Ma, P. Kuo, X. Tang. Narrow-linewidth source of greatly non-degenerate photon pairs for quantum repeaters from a short singly resonant cavity. Appl. Phys. B, 121, 413-419(2015).

    [41] J. Fekete, D. Rieländer, M. Cristiani, H. de Riedmatten. Ultranarrow-band photon-pair source compatible with solid state quantum memories and telecommunication networks. Phys. Rev. Lett., 110, 220502(2013).

    [42] D. Grassani, A. Simbula, S. Pirotta, M. Galli, M. Menotti, N. C. Harris, T. Baehr-Jones, M. Hochberg, C. Galland, M. Liscidini, D. Bajoni. Energy correlations of photon pairs generated by a silicon microring resonator probed by stimulated four wave mixing. Sci. Rep., 6, 23564(2016).

    [43] S. D. Rogers, A. Graf, U. A. Javid, Q. Lin. Coherent quantum dynamics of systems with coupling-induced creation pathways. Commun. Phys., 2, 95(2019).

    [44] P. Imany, J. A. Jaramillo-Villegas, O. D. Odele, K. Han, D. E. Leaird, J. M. Lukens, P. Lougovski, M. Qi, A. M. Weiner. 50-GHz-spaced comb of high-dimensional frequency-bin entangled photons from an on-chip silicon nitride microresonator. Opt. Express, 26, 1825-1840(2018).

    [45] M. Cai, O. Painter, K. J. Vahala. Observation of critical coupling in a fiber taper to a silica-microsphere whispering-gallery mode system. Phys. Rev. Lett., 85, 74-77(2000).

    [46] S. Soltani, V. M. Diep, R. Zeto, A. M. Armani. Stimulated anti-stokes Raman emission generated by gold nanorod coated optical resonators. ACS Photon., 5, 3550-3556(2018).

    [47] G. P. Agrawal. Nonlinear Fiber Optics(2007).

    Tools

    Get Citation

    Copy Citation Text

    Erasto Ortiz-Ricardo, Cesar Bertoni-Ocampo, Mónica Maldonado-Terrón, Arturo Garcia Zurita, Roberto Ramirez-Alarcon, Hector Cruz Ramirez, R. Castro-Beltrán, Alfred B. U’Ren, "Submegahertz spectral width photon pair source based on fused silica microspheres," Photonics Res. 9, 2237 (2021)

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Quantum Optics

    Received: Jun. 30, 2021

    Accepted: Sep. 1, 2021

    Published Online: Oct. 19, 2021

    The Author Email: Alfred B. U’Ren (alfred.uren@correo.nucleares.unam.mx)

    DOI:10.1364/PRJ.435521

    Topics