Spectroscopy and Spectral Analysis, Volume. 41, Issue 10, 3200(2021)

Detection of Pest Degree of Phyllostachys Chinese With Hyperspectral Data

Figures & Tables(13)
Location map of test area
Overall structure diagram
Original spectra and the curves after removing the spectral envelopes of samples under different injury levels
Hyperspectral remote sensing image of UAV
Spatial distribution of pest injury levels in sampling area
  • Table 1. Vegetation index and its calculation formula

    View table
    View in Article

    Table 1. Vegetation index and its calculation formula

    植被指数名称计算公式
    SAVI土壤调节植被指数1.5(ρ870-ρ680)/(ρ870+ρ680+0.5)
    PSNDa归一化色素差值指数a(ρ800-ρ690)/(R800+ρ690)
    PSNDb归一化色素差值指数b(ρ800-ρ635)/(ρ800+ρ635)
    mND705修正归一化差值指数(ρ750-ρ705)/(ρ750+ρ705-2ρ445)
    VOGaVogelman指数aρ740750
    mSR705改进比值植被指数(ρ750-ρ445)/(ρ705+ρ445)
    DD双重差异指数(ρ750-ρ720)-(ρ700+ρ670)
    NDI归一化差异指数(ρ750-ρ705)/(ρ750+ρ705)
    GNDVI绿光归一化植被指数(ρ750-ρ550)/(ρ750+ρ550)
  • Table 2. Spectral characteristic parameters and its definitions

    View table
    View in Article

    Table 2. Spectral characteristic parameters and its definitions

    参数名称定义
    Depth560绿峰吸收深度在560 nm处的吸收深度
    AreaG绿峰吸收面积在500~610 nm之间包络线与光谱反射率之间的面积
    AreaR红边吸收面积在680~760 nm之间包络线与光谱反射率之间的面积
    λR红边位置在680~760 nm之间反射率的一阶导数红边最大值位置
    dλR红边振幅在680~760 nm之间反射率的一阶导数红边最大值
    SDR红边面积在680~760 nm之间反射率的一阶导数红边面积
    SDR-SDB面积差值红边面积与蓝边面积的差值
  • Table 3. Discriminant function based on the original spectrum

    View table
    View in Article

    Table 3. Discriminant function based on the original spectrum

    函数ρ400ρ406ρ586ρ593ρ689ρ876常数方差/%
    y1788.24961.86-382.94422.87-204.3240.16-5.7189.3
    y23721.39-3461.94-101.38-109.9274.465.53-0.209.7
    y3-6028.946204.72352.27-646.97222.934.72-5.741.0
  • Table 4. Discriminant function based on the spectrum after removing the envelope

    View table
    View in Article

    Table 4. Discriminant function based on the spectrum after removing the envelope

    函数ρ403ρ406ρ409ρ412ρ505ρ515ρ735ρ749常数方差/%
    y1-113.40-18.91157.03-49.78-51.9214.14194.80-376.44239.6588.3
    y259.12-262.4482.0999.94-74.5342.7126.86-5.1718.749.1
    y344.92-162.80-194.94203.22120.66-78.28-23.3386.4624.462.7
  • Table 5. Discriminant function based on canopy vegetation indexes

    View table
    View in Article

    Table 5. Discriminant function based on canopy vegetation indexes

    函数PSNDaPSNDbmND705mSR705NDISAVIVOGaDDGNDVI常数方差/%
    y1-32.64-53.58-764.78-7.54224.8519.12116.4424.52-1.15-97.1087.2
    y2-64.1113.36136.3320.61-162.59-5.76132.7135.0621.21-127.4611.0
    y399.62-71.51121.129.22-117.48-34.92140.24-107.9163.65-189.801.8
  • Table 6. Discriminant function based on canopy spectral parameters

    View table
    View in Article

    Table 6. Discriminant function based on canopy spectral parameters

    函数Depth560AreaRAreaGλRdλRSDRSDR-SDB常数方差/%
    y141.840.620.23-68.530.03228.59-242.23-82.9584.0
    y260.65-0.230.791829.17-0.15-264.07174.6853.3714.2
    y3156.170.101.84-461.90-0.08324.33-239.62-122.101.8
  • Table 7. Different feature discriminant function accuracies

    View table
    View in Article

    Table 7. Different feature discriminant function accuracies

    特征检验精度/%Kappa
    系数
    R2
    健康轻度中度重度总体
    原始光谱92.073.382.484.884.40.790.89
    去包络线96.060.070.684.881.10.740.88
    植被指数96.073.370.678.879.70.740.88
    光谱参数92.073.364.784.878.70.760.85
  • Table 8. Test results of Phyllostachys Edulis Pest

    View table
    View in Article

    Table 8. Test results of Phyllostachys Edulis Pest

    采样
    区域
    健康轻度虫害中度虫害重度虫害总面积
    /m2
    面积/m2比例/%面积/m2比例/%面积/m2比例/%面积/m2比例/%
    洋门A222.162.321 395.0914.562 530.4526.415 432.3056.709 580
    洋门B855.036.474 228.6232.015 893.7144.622 231.6416.8913 209
    上湖A4 815.1343.892 004.4418.273 410.1331.09740.306.7510 970
    上湖B2 700.8143.911 470.3423.901 793.4929.16186.363.036 151
Tools

Get Citation

Copy Citation Text

. Detection of Pest Degree of Phyllostachys Chinese With Hyperspectral Data[J]. Spectroscopy and Spectral Analysis, 2021, 41(10): 3200

Download Citation

EndNote(RIS)BibTexPlain Text
Save article for my favorites
Paper Information

Category: Research Articles

Received: Oct. 7, 2020

Accepted: --

Published Online: Oct. 29, 2021

The Author Email:

DOI:10.3964/j.issn.1000-0593(2021)10-3200-08

Topics