Journal of the Chinese Ceramic Society, Volume. 53, Issue 6, 1368(2025)

Volume Expansion Effects and Mitigation in All-Solid-State Lithium Metal Batteries

WANG Zixuan1,2, ZHAO Chenzi3、*, ZHANG Rui2,4, and HUANG Jiaqi1,2
Author Affiliations
  • 1School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
  • 2Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing 100081, China
  • 3Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
  • 4Beijing Huairou Laboratory, Beijing 101400, China
  • show less
    References(109)

    [1] [1] POIZOT P, GAUBICHER J, RENAULT S, et al. Opportunities and challenges for organic electrodes in electrochemical energy storage[J]. Chem Rev, 2020, 120(14): 6490–6557.

    [2] [2] WANG Q S, PING P, ZHAO X J, et al. Thermal runaway caused fire and explosion of lithium ion battery[J]. J Power Sources, 2012, 208: 210–224.

    [3] [3] FAN E S, LI L, WANG Z P, et al. Sustainable recycling technology for Li-ion batteries and beyond: Challenges and future prospects[J]. Chem Rev, 2020, 120(14): 7020–7063.

    [4] [4] REN D S, LU L G, HUA R, et al. Challenges and opportunities of practical sulfide-based all-solid-state batteries[J]. eTransportation, 2023, 18: 100272.

    [5] [5] SUN C W, LIU J, GONG Y D, et al. Recent advances in all-solid-state rechargeable lithium batteries[J]. Nano Energy, 2017, 33: 363–386.

    [6] [6] YANG S J, HU J K, JIANG F N, et al. Oxygen-induced thermal runaway mechanisms of Ah-level solid-state lithium metal pouch cells[J]. eTransportation, 2023, 18: 100279.

    [8] [8] KATO Y, HORI S, SAITO T, et al. High-power all-solid-state batteries using sulfide superionic conductors[J]. Nat Energy, 2016, 1(4): 16030.

    [9] [9] KALNAUS S, DUDNEY N J, WESTOVER A S, et al. Solid-state batteries: The critical role of mechanics[J]. Science, 2023, 381(6664): eabg5998.

    [10] [10] LIU L L, XU J R, WANG S, et al. Practical evaluation of energy densities for sulfide solid-state batteries[J]. eTransportation, 2019, 1: 100010.

    [11] [11] YU Q J, JIANG K C, YU C L, et al. Recent progress of composite solid polymer electrolytes for all-solid-state lithium metal batteries[J]. Chin Chem Lett, 2021, 32(9): 2659–2678.

    [12] [12] ZHANG F Z, HUANG Q A, TANG Z P, et al. A review of mechanics-related material damages in all-solid-state batteries: Mechanisms, performance impacts and mitigation strategies[J]. Nano Energy, 2020, 70: 104545.

    [13] [13] SONG Y B, KWAK H, CHO W, et al. Electrochemo-mechanical effects as a critical design factor for all-solid-state batteries[J]. Curr Opin Solid State Mater Sci, 2022, 26(1): 100977.

    [14] [14] QI Y, HECTOR L G Jr, JAMES C, et al. Lithium concentration dependent elastic properties of battery electrode materials from first principles calculations[J]. J Electrochem Soc, 2014, 161(11): F3010–F3018.

    [15] [15] CHEN Y, YANG L F, GUO F L, et al. Mechanical-electrochemical modeling of silicon-graphite composite anode for lithium-ion batteries[J]. J Power Sources, 2022, 527: 231178.

    [16] [16] KOERVER R, AYGN I, LEICHTWEI T, et al. Capacity fade in solid-state batteries: Interphase formation and chemomechanical processes in nickel-rich layered oxide cathodes and lithium thiophosphate solid electrolytes[J]. Chem Mater, 2017, 29(13): 5574–5582.

    [17] [17] HAO F, MUKHERJEE P P. Mesoscale analysis of the electrolyte-electrode interface in all-solid-state Li-ion batteries[J]. J Electrochem Soc, 2018, 165(9): A1857–A1864.

    [18] [18] BUCCI G, SWAMY T, CHIANG Y M, et al. Modeling of internal mechanical failure of all-solid-state batteries during electrochemical cycling, and implications for battery design[J]. J Mater Chem A, 2017, 5(36): 19422–19430.

    [19] [19] LEWIS J A, TIPPENS J, CORTES F J Q, et al. Chemo–mechanical challenges in solid-state batteries[J]. Trends Chem, 2019, 1(9): 845–857.

    [21] [21] DE VASCONCELOS L S, XU R, XU Z R, et al. Chemomechanics of rechargeable batteries: Status, theories, and perspectives[J]. Chem Rev, 2022, 122(15): 13043–13107.

    [22] [22] ZHANG X Y, CHEN H S, FANG D N. Effects of surface stress on lithium-ion diffusion kinetics in nanosphere electrodes of lithium-ion batteries[J]. Int J Mech Sci, 2020, 169: 105323.

    [23] [23] SONG Y C, SOH A K, ZHANG J Q. On stress-induced voltage hysteresis in lithium ion batteries: Impacts of material property, charge rate and particle size[J]. J Mater Sci, 2016, 51(21): 9902–9911.

    [24] [24] FU Z H, CHEN X, ZHAO C Z, et al. Stress regulation on atomic bonding and ionic diffusivity: Mechanochemical effects in sulfide solid electrolytes[J]. Energy Fuels, 2021, 35(12): 10210–10218.

    [25] [25] LARCH F, CAHN J W. A linear theory of thermochemical equilibrium of solids under stress[J]. Acta Metall, 1973, 21(8): 1051–1063.

    [26] [26] BAI P, COGSWELL D A, BAZANT M Z. Suppression of phase separation in LiFePO4 nanoparticles during battery discharge[J]. Nano Lett, 2011, 11(11): 4890–4896.

    [27] [27] SHEN W J, LI K, HUANG J D, et al. Core–shell NCM cathode particles mechanical failure: Particle cracking and interfacial debonding[J]. ACS Appl Energy Mater, 2024, 7(15): 6384–6399.

    [28] [28] KIM S H, KIM K, CHOI H, et al.In situobservation of lithium metal plating in a sulfur-based solid electrolyte for all-solid-state batteries[J]. J Mater Chem A, 2019, 7(22): 13650–13657.

    [29] [29] DING J F, XU R, YAN C, et al. Integrated lithium metal anode protected by composite solid electrolyte film enables stable quasi-solid-state lithium metal batteries[J]. Chin Chem Lett, 2020, 31(9): 2339–2342.

    [30] [30] YOON W S, CHUNG K Y, MCBREEN J, et al. A comparative study on structural changes of LiCo1/3Ni1/3Mn1/3O2 and LiNi0.8Co0.15Al0.05O2 during first charge usingin situXRD[J]. Electrochem Commun, 2006, 8(8): 1257–1262.

    [31] [31] DE BIASI L, KONDRAKOV A O, GEWEIN H, et al. Between Scylla and Charybdis: Balancing among structural stability and energy density of layered NCM cathode materials for advanced lithium-ion batteries[J]. J Phys Chem C, 2017, 121(47): 26163–26171.

    [32] [32] YANG C P, XIE H, PING W W, et al. An electron/ion dual-conductive alloy framework for high-rate and high-capacity solid-state lithium-metal batteries[J]. Adv Mater, 2019, 31(3): e1804815.

    [33] [33] ANAND L, NARAYAN S. An elastic–viscoplastic model for lithium[J]. J Electrochem Soc, 2019, 166(6): A1092–A1095.

    [34] [34] DING S C, FAIRGRIEVE-PARK L, SENDETSKYI O, et al. Compressive creep deformation of lithium foil at varied cell conditions[J]. J Power Sources, 2021, 488: 229404.

    [35] [35] MASIAS A, FELTEN N, GARCIA-MENDEZ R, et al. Elastic, plastic, and creep mechanical properties of lithium metal[J]. J Mater Sci, 2019, 54(3): 2585–2600.

    [36] [36] ROBERTSON W M, MONTGOMERY D J. Elastic modulus of isotopically-concentrated lithium[J]. Phys Rev, 1960, 117(2): 440–442.

    [37] [37] WANG Y, DANG D, WANG M, et al. Mechanical behavior of electroplated mossy lithium at room temperature studied by flat punch indentation[J]. Appl Phys Lett, 2019, 115(4): 043903.

    [38] [38] FINCHER C D, OJEDA D, ZHANG Y W, et al. Mechanical properties of metallic lithium: From nano to bulk scales[J]. Acta Mater, 2020, 186: 215–222.

    [40] [40] MESSER R, NOACK F. Nuclear magnetic relaxation by self-diffusion in solid lithium: T1-frequency dependence[J]. Appl Phys, 1975, 6(1): 79–88.

    [41] [41] CHEN Y M, WANG Z Q, LI X Y, et al. Li metal deposition and stripping in a solid-state batteryviaCoble creep[J]. Nature, 2020, 578(7794): 251–255.

    [42] [42] LEPAGE W S, CHEN Y X, KAZYAK E, et al. Lithium mechanics: Roles of strain rate and temperature and implications for lithium metal batteries[J]. J Electrochem Soc, 2019, 166(2): A89–A97.

    [43] [43] OBROVAC M N, CHRISTENSEN L, LE D B, et al. Alloy design for lithium-ion battery anodes[J]. J Electrochem Soc, 2007, 154(9): A849.

    [44] [44] ZHOU W C, UPRETI S, WHITTINGHAM M S. Electrochemical performance of Al–Si–graphite composite as anode for lithium-ion batteries[J]. Electrochem Commun, 2011, 13(2): 158–161.

    [45] [45] QI Y, GUO H B, HECTOR L G, et al. Threefold increase in the Young’s modulus of graphite negative electrode during lithium intercalation[J]. J Electrochem Soc, 2010, 157(5): A558.

    [46] [46] REIMERS J N, DAHN J R. Electrochemical andin situX-ray diffraction studies of lithium intercalation in Li x CoO2[J]. J Electrochem Soc, 139(8): 2091–2097.

    [47] [47] MEETHONG N, HUANG H Y S, SPEAKMAN S A, et al. Strain accommodation during phase transformations in olivine-based cathodes as a materials selection criterion for high-power rechargeable batteries[J]. Adv Funct Mater, 2007, 17(7): 1115–1123.

    [48] [48] OHZUKU T, UEDA A, NAGAYAMA M. Electrochemistry and structural chemistry of LiNiO2 (R3m) for 4 volt secondary lithium cells[J]. J Electrochem Soc, 140(7): 1862–1870.

    [49] [49] KATAOKA R, KOJIMA T, TAKEICHI N. Electrochemical property of Li-Mn cation disordered Li-rich Li2MnO3 with NaCl type structure[J]. J Electrochem Soc, 2018, 165(2): A291–A296.

    [50] [50] BEAULIEU L Y, EBERMAN K W, TURNER R L, et al. Colossal reversible volume changes in lithium alloys[J]. Electrochem Solid-State Lett, 2001, 4(9): A137.

    [51] [51] OTOYAMA M, SUYAMA M, HOTEHAMA C, et al. Visualization and control of chemically induced crack formation in all-solid-state lithium-metal batteries with sulfide electrolyte[J]. ACS Appl Mater Interfaces, 2021, 13(4): 5000–5007.

    [52] [52] NING Z Y, JOLLY D S, LI G C, et al. Visualizing plating-induced cracking in lithium-anode solid-electrolyte cells[J]. Nat Mater, 2021, 20(8): 1121–1129.

    [53] [53] JUNG S H, KIM U H, KIM J H, et al. Ni-rich layered cathode materials with electrochemo–mechanically compliant microstructures for all-solid-state Li batteries[J]. Adv Energy Mater, 2020, 10(6): 1903360.

    [54] [54] HAN Y, JUNG S H, KWAK H, et al. Single- or poly-crystalline Ni-rich layered cathode, sulfide or halide solid electrolyte: Which will be the winners for all-solid-state batteries?[J]. Adv Energy Mater, 2021, 11(21): 2100126.

    [55] [55] HARRY K J, HALLINAN D T, PARKINSON D Y, et al. Detection of subsurface structures underneath dendrites formed on cycled lithium metal electrodes[J]. Nat Mater, 2014, 13(1): 69–73.

    [56] [56] LIU J, YUAN H, LIU H, et al. Unlocking the failure mechanism of solid state lithium metal batteries[J]. Adv Energy Mater, 2022, 12(4): 2100748.

    [57] [57] SHEN X, ZHANG R, SHI P, et al. How does external pressure shape Li dendrites in Li metal batteries?[J]. Adv Energy Mater, 2021, 11(10): 2003416.

    [58] [58] SHEN X, ZHANG R, SHI P, et al. The dead lithium formation under mechano–electrochemical coupling in lithium metal batteries[J]. Fundam Res, 2022, 4(6): 1498–1505.

    [59] [59] GAO H W, AI X, WANG H C, et al. Visualizing the failure of solid electrolyte under GPa-level interface stress induced by lithium eruption[J]. Nat Commun, 2022, 13(1): 5050.

    [60] [60] MO F J, RUAN J F, SUN S X, et al. Inside or outside: Origin of lithium dendrite formation of all solid-state electrolytes[J]. Adv Energy Mater, 2019, 9(40): 1902123.

    [61] [61] PORZ L, SWAMY T, SHELDON B W, et al. Mechanism of lithium metal penetration through inorganic solid electrolytes[J]. Adv Energy Mater, 2017, 7(20): 1701003.

    [62] [62] ZHANG R, SHEN X, ZHANG Y T, et al. Dead lithium formation in lithium metal batteries: A phase field model[J]. J Energy Chem, 2022, 71: 29–35.

    [63] [63] ZHANG L Q, YANG T T, DU C C, et al. Lithium whisker growth and stress generation in anin situatomic force microscope-environmental transmission electron microscope set-up[J]. Nat Nanotechnol, 2020, 15(2): 94–98.

    [64] [64] YUAN C H, LU W Q, XU J. Unlocking the electrochemical–mechanical coupling behaviors of dendrite growth and crack propagation in all-solid-state batteries[J]. Adv Energy Mater, 2021, 11(36): 2101807.

    [65] [65] FRANK W, BREIER U, ELSSSER C, et al. First-principles calculations of absolute concentrations and self-diffusion constants of vacancies in lithium[J]. Phys Rev Lett, 1996, 77(3): 518–521.

    [66] [66] JCKLE M, HELMBRECHT K, SMITS M, et al. Self-diffusion barriers: Possible descriptors for dendrite growth in batteries?[J]. Energy Environ Sci, 2018, 11(12): 3400–3407.

    [67] [67] LI J L, SHEN L, CHENG Z N, et al. Unveiling solid-solid contact states in all-solid-state lithium batteries: An electrochemical impedance spectroscopy view point[J]. J Energy Chem, 2025, 101: 16–22.

    [68] [68] RAJ V, VENTURI V, KANKANALLU V R, et al. Direct correlation between void formation and lithium dendrite growth in solid-state electrolytes with interlayers[J]. Nat Mater, 2022, 21(9): 1050–1056.

    [69] [69] KASEMCHAINAN J, ZEKOLL S, SPENCER JOLLY D, et al. Critical stripping current leads to dendrite formation on plating in lithium anode solid electrolyte cells[J]. Nat Mater, 2019, 18(10): 1105–1111.

    [70] [70] LU Y, ZHAO C Z, HU J K, et al. The void formation behaviors in working solid-state Li metal batteries[J]. Sci Adv, 2022, 8(45): eadd0510.x

    [71] [71] BANERJEE A, WANG X F, FANG C C, et al. Interfaces and interphases in all-solid-state batteries with inorganic solid electrolytes[J]. Chem Rev, 2020, 120(14): 6878–6933.

    [72] [72] ZHOU M M, ZHAO J J, WANG X D, et al. Surface engineering for high stable lithium-rich manganese-based cathode materials[J]. Chin Chem Lett, 2023, 34(6): 107793.

    [73] [73] NA Y, CHEN Z, XU Z K, et al. Novel fast lithium-ion conductor LiTa2PO8 enhances the performance of poly(ethylene oxide)-based polymer electrolytes in all-solid-state lithium metal batteries[J]. Chin Chem Lett, 2022, 33(8): 4037–4042.

    [74] [74] KOERVER R, ZHANG W B, DE BIASI L, et al. Chemo-mechanical expansion of lithium electrode materials-on the route to mechanically optimized all-solid-state batteries[J]. Energy Environ Sci, 2018, 11(8): 2142–2158.

    [75] [75] SINGER A, ZHANG M, HY S, et al. Nucleation of dislocations and their dynamics in layered oxide cathode materials during battery charging[J]. Nat Energy, 2018, 3: 641–647.

    [76] [76] XU R, DE VASCONCELOS L S, SHI J, et al. Disintegration of meatball electrodes for LiNixMnyCozO2 cathode materials[J]. Exp Mech, 2018, 58(4): 549–559.

    [77] [77] LIU T C, LIU J J, LI L X, et al. Origin of structural degradation in Li-rich layered oxide cathode[J]. Nature, 2022, 606(7913): 305–312.

    [78] [78] MAI W Q, CAO Q Y, ZHENG M T, et al. A fast ionic transport copolymeric network for stable quasi-solid lithium metal battery[J]. J Energy Chem, 2023, 87: 491–500.

    [79] [79] XIA S H, MU L Q, XU Z R, et al. Chemomechanical interplay of layered cathode materials undergoing fast charging in lithium batteries[J]. Nano Energy, 2018, 53: 753–762.

    [80] [80] LEE S H, JIN W, KIM S H, et al. Oxygen vacancy diffusion and condensation in lithium-ion battery cathode materials[J]. Angew Chem Int Ed, 2019, 58(31): 10478–10485.

    [81] [81] MU L Q, LIN R Q, XU R, et al. Oxygen release induced chemomechanical breakdown of layered cathode materials[J]. Nano Lett, 2018, 18(5): 3241–3249.

    [82] [82] ZHANG W B, SCHRDER D, ARLT T, et al. (Electro)chemical expansion during cycling: Monitoring the pressure changes in operating solid-state lithium batteries[J]. J Mater Chem A, 2017, 5(20): 9929–9936.

    [85] [85] SHI K, WAN Z P, YANG L, et al.In situconstruction of an ultra-stable conductive composite interface for high-voltage all-solid-state lithium metal batteries[J]. Angew Chem Int Ed, 2020, 59(29): 11784–11788.

    [86] [86] LEITE M S, RUZMETOV D, LI Z P, et al. Insights into capacity loss mechanisms of all-solid-state Li-ion batteries with Al anodes[J]. J Mater Chem A, 2014, 2(48): 20552–20559.

    [87] [87] FU K K, GONG Y H, LIU B Y, et al. Toward garnet electrolyte-based Li metal batteries: An ultrathin, highly effective, artificial solid-state electrolyte/metallic Li interface[J]. Sci Adv, 2017, 3(4): e1601659.

    [88] [88] HITZ G T, MCOWEN D W, ZHANG L, et al. High-rate lithium cycling in a scalable trilayer Li-garnet-electrolyte architecture[J]. Mater Today, 2019, 22: 50–57.

    [89] [89] ZHOU K, LI Y N, HA Y, et al. A nearly zero-strain Li-rich rock-salt oxide with multielectron redox reactions as a cathode for Li-ion batteries[J]. Chem Mater, 2022, 34(21): 9711–9721.

    [90] [90] ZHOU K, XIE Q, LI B H, et al. An in-depth understanding of the effect of aluminum doping in high-nickel cathodes for lithium-ion batteries[J]. Energy Storage Mater, 2021, 34: 229–240.

    [91] [91] LEE S B, PARK N Y, PARK G T, et al. Doping strategy in developing Ni-rich cathodes for high-performance lithium-ion batteries[J]. ACS Energy Lett, 2024, 9(2): 740–747.

    [92] [92] HAN X G, GONG Y H, FU K K, et al. Negating interfacial impedance in garnet-based solid-state Li metal batteries[J]. Nat Mater, 2017, 16(5): 572–579.

    [93] [93] WANG Z X, LU Y, ZHAO C Z, et al. Suppressing Li voids in all-solid-state lithium metal batteries through Li diffusion regulation[J]. Joule, 2024, 8(10): 2794–2810.

    [94] [94] KIM C, KIM J, PARK J, et al. Ion-conducting channel implanted anode matrix for all-solid-state batteries with high rate capability and stable anode/solid electrolyte interface[J]. Adv Energy Mater, 2021, 11(40): 2102045.

    [95] [95] WEI C C, LIU C, XIAO Y J, et al. SnF2-induced multifunctional interface-stabilized Li5.5PS4.5Cl1.5-based all-solid-state lithium metal batteries[J]. Adv Funct Mater, 2024, 34(18): 2314306.

    [96] [96] LI Z Y, TANG D S, WANG W J, et al. Construction of composite lithium with high adhesion work and fast ionic conductivity by black phosphorus for solid-state lithium batteries[J]. Nano Energy, 2024, 132: 110356.

    [97] [97] YANG M, YANG K Q, WU Y J, et al. Dendrite-free all-solid-state lithium metal batteries byin situphase transformation of the soft carbon-Li3N interface layer[J]. ACS Nano, 2024, 18(26): 16842–16852.

    [98] [98] WANG Z X, MU Z L, MA T H, et al. Soft carbon–thiourea with fast bulk diffusion kinetics for solid-state lithium metal batteries[J]. Adv Mater, 2024, 36(8): e2310395.

    [99] [99] WAN H L, ZHANG B, LIU S F, et al. Interface design for high-performance all-solid-state lithium batteries[J]. Adv Energy Mater, 2024, 14(19): 2303046.

    [100] [100] WAN H L, WANG Z Y, ZHANG W R, et al. Interface design for all-solid-state lithium batteries[J]. Nature, 2023, 623(7988): 739–744.

    [101] [101] WANG Z Y, XIA J L, JI X, et al. Lithium anode interlayer design for all-solid-state lithium-metal batteries[J]. Nat Energy, 2024, 9: 251–262.

    [102] [102] JIA M Q, WU T T, ZHANG S D, et al. Magnesium fluoride interlayers enabled by wet-chemical process for high-performance solid-state batteries[J]. Adv Funct Mater, 2024: 2415542.

    [103] [103] SHI Y R, HU L B, LI Q H, et al. An optimizing hybrid interface architecture for unleashing the potential of sulfide-based all-solid-state battery[J]. Energy Storage Mater, 2023, 63: 103009.

    [104] [104] LI S, YANG S J, LIU G X, et al. A dynamically stable mixed conducting interphase for all-solid-state lithium metal batteries[J]. Adv Mater, 2024, 36(3): e2307768.

    [105] [105] LIAO Y L, HU J K, FU Z H, et al. Integrated interface configuration byin situinterface chemistry enabling uniform lithium deposition in all-solid-state lithium metal batteries[J]. J Energy Chem, 2023, 80: 458–465.

    [106] [106] XIONG B Q, LIU X Y, NIAN Q S, et al. Field-responsive grain boundary against dendrite penetration for all-solid-state batteries[J]. Energy Environ Sci, 2024, 17(18): 6707–6716.

    [107] [107] LI X B, NING P X, LIU P, et al. Enabling fast mass transport in anode by a smartly built-in LiC6 phase for high-performance solid-state lithium metal batteries[J]. Adv Funct Mater, 2024, 34(48): 2408447.

    [108] [108] ZHU F J, HU X Y, XU L Q, et al. Restrained Li garnet interface contact deterioration manipulated by lithium modification for solid-state batteries[J]. Adv Funct Mater, 2024, 34(22): 2314994.

    [109] [109] YUAN H Y, LIN W J, TIAN C H, et al.In-situcoating strategy to synthesize ultra-soft sulfide solid-state electrolytes for dendrite-free lithium metal batteries[J]. Nano Energy, 2024, 128: 109835.

    [110] [110] ZHOU S Q, LI M R, WANG P K, et al. Liquid metal as an efficient protective layer for lithium metal anodes in all-solid-state batteries[J]. Carbon Energy, 2024, 6(7): e462.

    [111] [111] LI J R, SU H, JIANG Z, et al. Domain-limited laminar lithium deposition behavior mediated by the design of hybrid anode for sulfide-based all-solid-state batteries[J]. Acta Mater, 2023, 244: 118592.

    [112] [112] SUN S, ZHAO C Z, YUAN H, et al. Eliminating interfacial O-involving degradation in Li-rich Mn-based cathodes for all-solid-state lithium batteries[J]. Sci Adv, 2022, 8(47): eadd5189.

    [113] [113] TREVISANELLO E, RUESS R, CONFORTO G, et al. Polycrystalline and single crystalline NCM cathode materials: Quantifying particle cracking, active surface area, and lithium diffusion[J]. Adv Energy Mater, 2021, 11(18): 2003400.

    [114] [114] YANG G B, HUANG L J, SONG J P, et al. Impact of lithium diffusion paths on electrochemical behavior of LiNi0.6Co0.2Mn0.2O2 cathode for lithium-ion batteries[J]. Electrochim Acta, 2023, 465: 142990.

    Tools

    Get Citation

    Copy Citation Text

    WANG Zixuan, ZHAO Chenzi, ZHANG Rui, HUANG Jiaqi. Volume Expansion Effects and Mitigation in All-Solid-State Lithium Metal Batteries[J]. Journal of the Chinese Ceramic Society, 2025, 53(6): 1368

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Dec. 31, 2024

    Accepted: Jul. 11, 2025

    Published Online: Jul. 11, 2025

    The Author Email: ZHAO Chenzi (zcz@mail.tsinghua.edu.cn)

    DOI:10.14062/j.issn.0454-5648.20240847

    Topics