Laser & Optoelectronics Progress, Volume. 53, Issue 5, 50001(2016)
Research Progress on Optical Millimeter-Wave Generation Based on Four-Wave Mixing
[1] [1] Xie Shizhong, Chen Minghua, Chen Hongwei. Advance in microwave photonics[J]. ZTE Technology Journal, 2009, 15(3): 6-10.
[2] [2] Yao J. Microwave photonics[J]. J Lightwave Technol, 2009, 27(3): 314-335.
[3] [3] Davies P A, Foord A P, Razavi K E. Millimeter-wave signal generation by optical filtering of frequency modulated laser spectra[J]. Electron Lett, 1995, 31(20): 1754-1756.
[4] [4] Fukushima S, Silva F C C, Muramoto Y, et al.. Optoelectronic millimeter-wave synthesis using an optical frequency comb generator, optically injection locked lasers and a unitraveling-carrier photodiode[J]. J Lightwave Technol, 2003, 21(12): 3043-3051.
[5] [5] O′Reilly J J, Lane P M, Heidemann R, et al.. Optical generation of very narrow linewidth millimeter wave signals[J]. Electron Lett, 1992, 28(25): 2309-2311.
[6] [6] Yu J, Gu J, Liu X, et al.. Seamless integration of an 8×2.5 Gb/s WDM-PON and radio-over-fiber using all-optical up-conversion based on Raman-assisted FWM[J]. IEEE Photonic Technol Lett, 2005, 17(9): 1986-1988.
[7] [7] Smith G H, Novak D. Broad-band millimeter-wave (38 GHz) fiber-wireless transmission system using electrical and optical SSB modulation to overcome dispersion effects[J]. IEEE Photonic Technol Lett, 1998, 10(1): 141-143.
[8] [8] Ma J, Yu J, Yu C, et al.. Transmission performance of the optical mm-wave generated by double-sideband intensity-modulation[J]. Opt Commun, 2007, 280(2): 317-326.
[9] [9] Qi G, Yao J P, Seregelyi J, et al.. Optical generation band distribution of continuously tunable millimeter-wave signals using an optical phase modulator[J]. J Lightwave Technol, 2005, 23(9): 2687-2695.
[10] [10] Chen X, Deng Z, Yao J. Photonic generation of microwave signal using a dual-wavelength single-longitudinal-mode fiber ring laser[J]. IEEE Trans Microw Theory Tech, 2006, 54(2): 804-809.
[11] [11] Shen Yichun. Study on applications of stimulated Brillouin scattering in RoF systems[D]. Hangzhou: Zhejiang University, 2005: 18-30.
[12] [12] Galili M, Oxenlwe L K, Zibar D, et al.. 160 Gb/s Raman-assisted SPM wavelength converter[C]. 30th European Conference on Optical Communication, Stockholm, Sweden, 2004.
[13] [13] Jia Z, Yu J, Chang J K. All-optical 16×2.5 Gb/s WDM signal simultaneous up-conversion based on XPM in an NOLM in ROF systems[J]. IEEE Photonic Technol Lett, 2005, 17(12): 2724-2726.
[14] [14] Leesti B, Zilkie A J, Aitchison J S, et al.. Broad-band wavelength up-conversion of picosecond pulses via four-wave mixing in a quantum-dash waveguide[J]. IEEE Photonic Technol Lett, 2005, 17(5): 1046-1048.
[15] [15] Inoue K, Yoshino M. Noise suppression effect in cascaded wavelength conversion using light-injected DFB-LDs[J]. Electron Lett, 1996, 32(23): 2165-2166.
[16] [16] Shen Y, Zhang X, Chen K. Optical single sideband modulation of 11-GHz ROF system using stimulated Brillouin scattering[J]. IEEE Photonic Technol Lett, 2005, 17(6): 1277-1279.
[17] [17] Ma J, Yu J, Yu C, et al.. Wavelength conversion based on four-wave mixing in high-nonlinear dispersion shifted fiber using a dual-pump configuration[J]. J Lightwave Technol, 2006, 24(7): 2851-2858.
[18] [18] Wang Q, Zeng F, Rideout H, et al.. Millimeter-wave generation based on four-wave mixing in an SOA[C]. International Topical Meeting on Microwave Photonics, Grenoble, France, 2006.
[19] [19] Ma J, Yu J, Yu C, et al.. Reducing polarization sensitivity for all-optical wavelength conversion of the optical packets based on FWM in HNL-DSF using co-polarized pump scheme[J]. Opt Commun, 2006, 260(2): 522-527.
[20] [20] Schneider T. Nonlinear optics in telecommunications[M]. New York: Springer-Verlag Berlin Heidelberg, 2004: 167-200.
[21] [21] Agrawal G P. Nonlinear fiber optics (4th edition)[M]. Boston: Academic Press, 2007: 402-409.
[22] [22] Chi Nan, Qi Jiang. Theoretical optimization and experiment of SOA wavelength converter based on four-wave-mixing[J]. Journal of Optoelectronics·Laser, 2000, 11(5): 457-460.
[23] [23] Seo J H, Choi C S, Kang Y S, et al.. SOA-EAM frequency up/down-converters for 60-GHz bi-directional radio-on-fiber systems[J]. IEEE Trans Microw Theory Tech, 2006, 54(2): 959-966.
[24] [24] Kelly A E, Ellis A D, Nesset D, et al.. 100 Gbit/s wavelength conversion using FWM in an MQW semiconductor optical amplifier[J]. Electron Lett, 1998, 34(20): 1955-1956.
[25] [25] D′Ottavi A, Spano P, Hunziker G, et al.. Wavelength conversion at 10 Gb/s by four-wave mixing over a 30-nm interval[J]. IEEE Photonic Technol Lett, 1998, 10(7): 952-954.
[26] [26] Wang Q, Rideout H, Zeng F, et al.. Millimeter-wave frequency tripling based on four-wave mixing in a semiconductor optical amplifier[J]. IEEE Photonic Technol Lett, 2006, 18(23): 2460-2462.
[27] [27] Kim H J, Song H J, Song J I. All-optical frequency up-conversion technique using four-wave mixing in semiconductor optical amplifiers for radio-over-fiber applications[C]. Proceedings of IEEE/MTT-S International Microwave Symposium, Honolulu, US, 2007: 67-70.
[28] [28] Kim H J, Song J I. Simultaneous WDM RoF signal generation utilizing an all-optical frequency up-converter based on FWM in an SOA[J]. IEEE Photonic Technol Lett, 2011, 23(12): 828-830.
[29] [29] Filion B, Ng W C, Nguyen A T, et al.. Wideband wavelength conversion of 16 Gbaud 16-QAM and 5 Gbaud 64-QAM signals in a semiconductor optical amplifier[J]. Opt Express, 2013, 21(17): 19825-19833.
[30] [30] Li M, Chen H, Yin F, et al.. Full-duplex 60-GHz RoF system with optical local oscillating carrier distribution scheme based on FWM effect in SOA[J]. IEEE Photonic Technol Lett, 2009, 21(22): 1716-1718.
[31] [31] Lu J, Yu J J, Zhou H, et al.. Polarization insensitive wavelength conversion based on dual-pump four-wave mixing for polarization multiplexing signal in SOA[J]. Opt Commun, 2011, 284(22): 5364-5371.
[32] [32] Xiao Y, Yu J. Novel 60 GHz RoF system with optical single sideband mm-wave signal generation and wavelength reuse for uplink connection[J]. Opt Commun, 2012, 285(3): 229-232.
[33] [33] Xiang Y, Jiang N, Wang D, et al.. Multiple basestation RoF system enabled by multiple wavelength conversion based on polarization multiplexed FWM in SOA[C]. 12th International Conference on Optical Communications and Networks, Chengdu, China, 2013.
[34] [34] Qin J, Ji Y, Wang H, et al.. Multichannel wavelength multicasting for two QPSK signals based on FWM in SOA[J]. Chin Opt Lett, 2015, 13(1): 010601.
[35] [35] Hsueh Y T, Jia Z, Chien H C, et al.. A novel bidirectional 60-GHz radio-over-fiber scheme with multiband signal generation using a single intensity modulator[J]. IEEE Photonic Technol Lett, 2009, 21(18): 1338-1340.
[36] [36] Kibria R, Austin M W. All optical signal-processing techniques utilizing four wave mixing[J]. Photonics, 2015, 2(1): 200-213.
[37] [37] Okuno T, Hirano M, Kato T, et al.. Highly nonlinear and perfectly dispersion-flattened fiber for efficient optical signal processing applications[J]. Electron Lett, 2003, 39(13): 972-974.
[38] [38] Wiberg A, Pérez-Millán P, Andrés M V, et al.. Microwave-photonic frequency multiplication utilizing optical four-wave mixing and fiber Bragg gratings[J]. J Lightwave Technol, 2006, 24(1): 329- 334.
[39] [39] Galili M, Mulvad H C H, Grüner-Nielsen L, et al.. 640 Gbit/s optical wavelength conversion using FWM in a polarization maintaining HNLF[C]. 34th European Conference on Optical Communication, Brussels, Belgium, 2008: Tu.3.D.5.
[40] [40] Wang D, Cheng T H, Yeo Y K, et al.. Performance comparison of using SOA and HNLF as FWM medium in a wavelength multicasting scheme with reduced polarization sensitivity[J]. J Lightwave Technol, 2010, 28(24): 3497-3505.
[41] [41] Sharif G M, Nguyen-The Q, Matsuura M, et al.. All-optical pulse width-tunable wavelength conversion of return-to-zero differential phase-shift keying signal[J]. Opt Rev, 2015, 22(4): 553-559.
[42] [42] Fernández-Ruiz M R, Lei L, Rochette M, et al.. All-optical wavelength conversion based on time-domain holography[J]. Opt Express, 2015, 23(17): 22847-22856.
[43] [43] Yu J, Dong Z, Jian W, et al.. All-optical up-conversion 10-Gb/s signal in 60-GHz RoF system using 2-m bismuth oxide-based fiber[C]. Optical Fiber Communication Conference, Optical Society of America, San Diego, US, 2010: OThO6.
[44] [44] Wang Tianliang. Studies on millimeter wave radio-over-fiber key technology[D]. Beijing: Tsinghua University, 2010: 31-60.
[45] [45] Gao S, Xiao X. All-optical wavelength multicasting based on cascaded four wave mixing with a single pump in highly nonlinear fibers[J]. Opt Commun, 2012, 285(5): 784-789.
[46] [46] Fukuda H, Yarnada K, Shoji T, et al.. Four-wave mixing in silicon wire waveguides[J]. Opt Express, 2005, 13(12): 4629-4637.
[47] [47] Yamada K, Fukuda H, Tsuchizawa T, et al.. All-optical efficient wavelength conversion using silicon photonic wire waveguide[J]. IEEE Photonic Technol Lett, 2006, 18(9): 1046-1048.
[48] [48] Rong H, Kuo Y H, Liu A, et al.. High efficiency wavelength conversion of 10 Gb/s data in silicon waveguides[J]. Opt Express, 2006, 14(3): 1182-1188.
[49] [49] Ayotte S, Rong H, Xu S, et al.. Multichannel dispersion compensation using a silicon waveguide-based optical phase conjugator[J]. Opt Lett, 2007, 32(16): 2393-2395.
[50] [50] Chen J, Gao S. Wavelength-assignable 1310/1550 nm wavelength conversion using completely phase-matched two-pump four-wave mixing in a silicon waveguide[J]. Opt Commun, 2015, 356: 389-394.
[51] [51] Smecktala F, Brilland L, Charticr T, et al.. Recent advances in the development of holey optical fibers based on sulfide glasses[C]. SPIE, 2006, 6128: 61280M.
[52] [52] Eggleton B, Luther-Davies B, Richardson K. Chalcogenide photonics[J]. Nat Photon, 2011, 5(3): 141-148.
[54] [54] Wang Cui, Dai Shixun, Zhang Peiqing, et al.. Research progress of infrared supercontinuum generation in chalcogenide glass fibers[J]. Laser & Optoelectronics Progress, 2015, 52(3): 030001.
[55] [55] Luan F, Pelusi M D, Lamont M R E, et al.. Dispersion engineered As2S3 planar waveguides for broadband four-wave mixing based wavelength conversion of 40 Gb/s signals[J]. Opt Express, 2009, 17(5): 3514-3520.
[56] [56] Pelusi M D, Luan F, Madden S, et al.. Wavelength conversion of high-speed phase and intensity modulated signals using a highly nonlinear chalcogenide glass chip[J]. IEEE Photonic Technol Lett, 2010, 22(1): 3-5.
[57] [57] Dai Shixun, Yu Xingyan, Zhang Wei, et al.. Research progress of chalcogenide glass photonic crystal fibers[J]. Laser & Optoelectronics Progress, 2011, 48(9): 090602.
[58] [58] Szpulak M, Février S. Chalcogenide As2S3suspended core fiber for mid-IR wavelength conversion based on degenerate four-wave mixing[J]. IEEE Photonic Technol Lett, 2009, 21(13): 884-886.
[59] [59] Nguyen D M, Le S D, Lengle K, et al.. Demonstration of nonlinear effects in an ultra-highly nonlinear AsSe suspended-core chalcogenide fiber[J]. IEEE Photonic Technol Lett, 2010, 22(24): 1844-1846.
[60] [60] Bres C S, Zlatanovic S, Wiberg A O J, et al.. Demonstration of continuous-wave four-wave mixing in AsSe chalcogenide microstructured fiber[C]. 37th European Conference and Exposition on Optical Communications, Geneva, Switzerland, 2011.
Get Citation
Copy Citation Text
Liu Li, Xu Tiefeng, Dai Zhenxiang, Liu Taijun, Dai Shixun, Wang Xunsi, Zhang Xiupu. Research Progress on Optical Millimeter-Wave Generation Based on Four-Wave Mixing[J]. Laser & Optoelectronics Progress, 2016, 53(5): 50001
Category: Reviews
Received: Dec. 1, 2015
Accepted: --
Published Online: May. 5, 2016
The Author Email: Liu Li (1301082005@nbu.edu.cn)