Journal of Synthetic Crystals, Volume. 52, Issue 3, 394(2023)

Research Progress of Photocatalytic Modification of Copper Based Sulfides

YU Haiyan1,2, LIANG Haiou1, BAI Jie1, and LI Chunping1、*
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    References(65)

    [1] [1] SAYED M, YU J G, LIU G, et al. Non-noble plasmonic metal-based photocatalysts[J]. Chemical Reviews, 2022, 122(11): 10484-10537.

    [3] [3] SANDS T D, WASHBURN J, GRONSKY R. High resolution observations of copper vacancy ordering in chalcocite (Cu2S) and the transformation to djurleite (Cu1.97 to 1.94 S)[J]. Physica Status Solidi (a), 1982, 72(2): 551-559.

    [4] [4] KAR P, FARSINEZHAD S, ZHANG X J, et al. Anodic Cu2S and CuS nanorod and nanowall arrays: preparation, properties and application in CO2 photoreduction[J]. Nanoscale, 2014, 6(23): 14305-14318.

    [6] [6] ROY P, SRIVASTAVA S K. Nanostructured copper sulfides: synthesis, properties and applications[J]. CrystEngComm, 2015, 17(41): 7801-7815.

    [7] [7] COMIN A, MANNA L. New materials for tunable plasmonic colloidal nanocrystals[J]. Chemical Society Reviews, 2014, 43(11): 3957-3975.

    [9] [9] LU X Y, DENG F, LIU M, et al. The regulation on visible-light photocatalytic activity of CuInS2 by different Cu/In molar ratio[J]. Materials Chemistry and Physics, 2018, 212: 372-377.

    [10] [10] NAKAMURA Y, ISO Y, ISOBE T. Bandgap-tuned CuInS2/ZnS core/shell quantum dots for a luminescent downshifting layer in a crystalline silicon solar module[J]. ACS Applied Nano Materials, 2020, 3(4): 3417-3426.

    [11] [11] HADKE S, HUANG M L, CHEN C, et al. Emerging chalcogenide thin films for solar energy harvesting devices[J]. Chemical Reviews, 2022, 122(11): 10170-10265.

    [12] [12] XU W, XIE Z Z, HAN W J, et al. Rational design of interfacial energy level matching for CuGaS2 based photocatalysts over hydrogen evolution reaction[J]. International Journal of Hydrogen Energy, 2022, 47(23): 11853-11862.

    [13] [13] SHAHZAD K, TAHIR M B, SAGIR M, et al. Synthesis of novel p-n heterojunction Cu2SnS3/Ti3+-TiO2 for the complete tetracycline degradation in few minutes and photocatalytic activity under simulated solar irradiation[J]. Ceramics International, 2021, 47(22): 31337-31348.

    [14] [14] WANG J Y, BO T T, SHAO B Y, et al. Effect of S vacancy in Cu3SnS4 on high selectivity and activity of photocatalytic CO2 reduction[J]. Applied Catalysis B: Environmental, 2021, 297: 120498.

    [15] [15] MAICUS M, LOPEZ E, SANCHEZ M C, et al. Magnetostatic energy calculations in two- and three-dimensional arrays of ferromagnetic prisms[J]. IEEE Transactions on Magnetics, 1998, 34(3): 601-607.

    [16] [16] HASANVANDIAN F, ZEHTAB SALMASI M, MORADI M, et al. Enhanced spatially coupling heterojunction assembled from CuCo2S4 yolk-shell hollow sphere capsulated by Bi-modified TiO2 for highly efficient CO2 photoreduction[J]. Chemical Engineering Journal, 2022, 444: 136493.

    [17] [17] MAO M, XU J, YU X B, et al. A Z-type heterojunction of bimetal sulfide CuNi2S4 and CoWO4 for catalytic hydrogen evolution[J]. Dalton Transactions, 2020, 49(19): 6457-6470.

    [18] [18] JIANG R R, LU G H, NKOOM M, et al. Mineralization and toxicity reduction of the benzophenone-1 using 2D/2D Cu2WS4/BiOCl Z-scheme system: simultaneously improved visible-light absorption and charge transfer efficiency[J]. Chemical Engineering Journal, 2020, 400: 125913.

    [19] [19] RAZA A, SHEN H L, HAIDRY A A. Novel Cu2ZnSnS4/Pt/g-C3N4 heterojunction photocatalyst with straddling band configuration for enhanced solar to fuel conversion[J]. Applied Catalysis B: Environmental, 2020, 277: 119239.

    [21] [21] EKIMOV A I, EFROS A L, ONUSHCHENKO A A. Quantum size effect in semiconductor microcrystals[J]. Solid State Communications, 1985, 56(11): 921-924.

    [22] [22] LI S, GE Z H, ZHANG B P, et al. Mechanochemically synthesized sub-5 nm sized CuS quantum dots with high visible-light-driven photocatalytic activity[J]. Applied Surface Science, 2016, 384: 272-278.

    [24] [24] ZHANG Y M, YANG X Y, WANG Y L, et al. Insight into l-cysteine-assisted growth of Cu2S nanoparticles on exfoliated MoS2 nanosheets for effective photoreduction removal of Cr(VI)[J]. Applied Surface Science, 2020, 518: 146191.

    [25] [25] KAPURIA N, PATIL N N, RYAN K M, et al. Two-dimensional copper based colloidal nanocrystals: synthesis and applications[J]. Nanoscale, 2022, 14(8): 2885-2914.

    [26] [26] ZOU J, LIAO G D, JIANG J Z, et al. Controllable interface engineering of g-C3N4/CuS heterojunction photocatalysts[J]. Social Science Electronic Publishing, 2019, 32: 178.

    [27] [27] LIU Z M, LIU J, HUANG Y B, et al. From one-dimensional to two-dimensional wurtzite CuGaS2 nanocrystals: non-injection synthesis and photocatalytic evolution[J]. Nanoscale, 2018, 11(1): 158-169.

    [28] [28] LI Y M, LIU J, LI X Y, et al. Evolution of hollow CuInS2 nanododecahedrons via kirkendall effect driven by cation exchange for efficient solar water splitting[J]. ACS Applied Materials & Interfaces, 2019, 11(30): 27170-27177.

    [29] [29] DING Y, CHEN Y J, GUAN Z F, et al. Hierarchical CuS@ZnIn2S4 hollow double-shelled p-n heterojunction octahedra decorated with fullerene C60 for remarkable selectivity and activity of CO2 photoreduction into CH4[J]. ACS Applied Materials & Interfaces, 2022, 14(6): 7888-7899.

    [31] [31] SANTAMARIA-PEREZ D, GARBARINO G, CHULIA-JORDAN R, et al. Pressure-induced phase transformations in mineral chalcocite, Cu2S, under hydrostatic conditions[J]. Journal of Alloys and Compounds, 2014, 610: 645-650.

    [32] [32] YANG X, JIANG S Q, ZHANG H C, et al. Pressure-induced structural phase transition and electrical properties of Cu2S[J]. Journal of Alloys and Compounds, 2018, 766: 813-817.

    [33] [33] CAO Q, CHE R C, CHEN N. Scalable synthesis of Cu2S double-superlattice nanoparticle systems with enhanced UV/visible-light-driven photocatalytic activity[J]. Applied Catalysis B: Environmental, 2015, 162: 187-195.

    [34] [34] TELKHOZHAYEVA M, KONAR R, LAVI R, et al. Phase-dependent photocatalytic activity of bulk and exfoliated defect-controlled flakes of layered copper sulfides under simulated solar light[J]. ACS Sustainable Chemistry & Engineering, 2021, 9(48): 16103-16114.

    [36] [36] FAKHRAVAR S, FARHADIAN M, TANGESTANINEJAD S. Excellent performance of a novel dual Z-scheme Cu2S/Ag2S/BiVO4 heterostructure in metronidazole degradation in batch and continuous systems: immobilization of catalytic particles on α-Al2O3 fiber[J]. Applied Surface Science, 2020, 505: 144599.

    [39] [39] ZHANG X J, GUO Y C, TIAN J, et al. Controllable growth of MoS2 nanosheets on novel Cu2S snowflakes with high photocatalytic activity[J]. Applied Catalysis B: Environmental, 2018, 232: 355-364.

    [40] [40] KAUSHIK B, YADAV S, RANA P, et al. Precisely engineered type II ZnO-CuS based heterostructure: a visible light driven photocatalyst for efficient mineralization of organic dyes[J]. Applied Surface Science, 2022, 590: 153053.

    [41] [41] YUE Y M, ZHANG P X, WANG W, et al. Enhanced dark adsorption and visible-light-driven photocatalytic properties of narrower-band-gap Cu2S decorated Cu2O nanocomposites for efficient removal of organic pollutants[J]. Journal of Hazardous Materials, 2020, 384: 121302.

    [42] [42] TANG Q Y, CHEN W F, LV Y R, et al. Z-scheme hierarchical Cu2S/Bi2WO6 composites for improved photocatalytic activity of glyphosate degradation under visible light irradiation[J]. Separation and Purification Technology, 2020, 236: 116243.

    [43] [43] ZHANG R, YU J R, ZHANG T Q, et al. A novel snowflake dual Z-scheme Cu2S/RGO/Bi2WO6 photocatalyst for the degradation of bisphenol A under visible light and its effect on crop growth[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 641: 128526.

    [44] [44] LEMOS DE SOUZA M, PEREIRA DOS SANTOS D, CORIO P. Localized surface plasmon resonance enhanced photocatalysis: an experimental and theoretical mechanistic investigation[J]. RSC Advances, 2018, 8(50): 28753-28762.

    [46] [46] MANZI A, SIMON T, SONNLEITNER C, et al. Light-induced cation exchange for copper sulfide based CO2 reduction[J]. Journal of the American Chemical Society, 2015, 137(44): 14007-14010.

    [47] [47] KIM Y, PARK K Y, JANG D M, et al. Synthesis of Au-Cu2S core-shell nanocrystals and their photocatalytic and electrocatalytic activity[J]. The Journal of Physical Chemistry C, 2010, 114(50): 22141-22146.

    [48] [48] ZHANG R, WANG H Y, LI Y Y, et al. Investigation on the photocatalytic hydrogen evolution properties of Z-scheme Au NPs/CuInS2/NCN-CNx composite photocatalysts[J]. ACS Sustainable Chemistry & Engineering, 2021, 9(21): 7286-7297.

    [54] [54] KAUSHIK B, RANA P, SOLANKI K, et al. In-situ synthesis of 3-D hierarchical ZnFe2O4 modified Cu2S snowflakes: exploring their bifunctionality in selective photocatalytic reduction of nitroarenes and methyl orange degradation[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2022, 433: 114165.

    [55] [55] YANG J H, FANG L, GAN X H, et al. Efficient degradation of sulfamethoxazole under visible light irradiation by polyaniline/copper sulfide composite photocatalyst[J]. Environmental Science and Pollution Research, 2022, 29(24): 36502-36511.

    [56] [56] CHEN Q S, ZHOU H Q, WANG J C, et al. Activating earth-abundant insulator BaSO4 for visible-light induced degradation of tetracycline[J]. Applied Catalysis B: Environmental, 2022, 307: 121182.

    [57] [57] ZOU J, LIAO G D, WANG H T, et al. Controllable interface engineering of g-C3N4/CuS nanocomposite photocatalysts[J]. Journal of Alloys and Compounds, 2022, 911: 165020.

    [58] [58] JAFARINEJAD A, BASHIRI H, SALAVATI-NIASARI M. Sonochemical synthesis and characterization of CuInS2 nanostructures using new sulfur precursor and their application as photocatalyst for degradation of organic pollutants under simulated sunlight[J]. Arabian Journal of Chemistry, 2022, 15(8): 104007.

    [59] [59] GUO J R, WANG L P, WEI X, et al. Direct Z-scheme CuInS2/Bi2MoO6 heterostructure for enhanced photocatalytic degradation of tetracycline under visible light[J]. Journal of Hazardous Materials, 2021, 415: 125591.

    [60] [60] WANG T, MEN Q Y, LIU X Q, et al. A staggered type of 0D/2D CuInS2/NiAl-LDH heterojunction with enhanced photocatalytic performance for the degradation of 2, 4-Dichlorophenol[J]. Separation and Purification Technology, 2022, 294: 121215.

    [61] [61] LIU C Q, ZHANG B, LIU E Z, et al. Nano composite of CuInS2/ZnO with improved photocatalytic activity of degradation and hydrogen production[J]. Optical Materials, 2020, 109: 110379.

    [62] [62] CHEN Q H, ZHANG M M, LI J Y, et al. Construction of immobilized 0D/1D heterostructure photocatalyst Au/CuS/CdS/TiO2 NBs with enhanced photocatalytic activity towards moxifloxacin degradation[J]. Chemical Engineering Journal, 2020, 389: 124476.

    [63] [63] BHOI Y P, MISHRA B G. Photocatalytic degradation of alachlor using type-II CuS/BiFeO3 heterojunctions as novel photocatalyst under visible light irradiation[J]. Chemical Engineering Journal, 2018, 344: 391-401.

    [64] [64] IERVOLINO G, VAIANO V, SANNINO D, et al. Hydrogen production from glucose degradation in water and wastewater treated by Ru-LaFeO3/Fe2O3 magnetic particles photocatalysis and heterogeneous photo-Fenton[J]. International Journal of Hydrogen Energy, 2018, 43(4): 2184-2196.

    [65] [65] WANG Y Z, CHEN D, QIN L S, et al. Hydrogenated ZnIn2S4 microspheres: boosting photocatalytic hydrogen evolution by sulfur vacancy engineering and mechanism insight[J]. Physical Chemistry Chemical Physics: PCCP, 2019, 21(45): 25484-25494.

    [66] [66] REDDY D A, KIM Y, GOPANNAGARI M, et al. Recent advances in metal-organic framework-based photocatalysts for hydrogen production[J]. Sustainable Energy & Fuels, 2021, 5(6): 1597-1618.

    [67] [67] GUO W W, KIM J, KIM H, et al. Cu-Co-P electrodeposited on carbon paper as an efficient electrocatalyst for hydrogen evolution reaction in anion exchange membrane water electrolyzers[J]. International Journal of Hydrogen Energy, 2021, 46(38): 19789-19801.

    [68] [68] HOU J W, HUANG B X, KONG L C, et al. One-pot hydrothermal synthesis of CdS-CuS decorated TiO2 NTs for improved photocatalytic dye degradation and hydrogen production[J]. Ceramics International, 2021, 47(21): 30860-30868.

    [69] [69] LUO J H, LIN Z X, ZHAO Y, et al. The embedded CuInS2 into hollow-concave carbon nitride for photocatalytic H2O splitting into H2 with S-scheme principle[J]. Chinese Journal of Catalysis, 2020, 41(1): 122-130.

    [70] [70] FAN H T, WU Z, LIU K C, et al. Fabrication of 3D CuS@ZnIn2S4 hierarchical nanocages with 2D/2D nanosheet subunits p-n heterojunctions for improved photocatalytic hydrogen evolution[J]. Chemical Engineering Journal, 2022, 433: 134474.

    [71] [71] XIN X, SONG Y R, GUO S H, et al. In-situ growth of high-content 1T phase MoS2 confined in the CuS nanoframe for efficient photocatalytic hydrogen evolution[J]. Applied Catalysis B: Environmental, 2020, 269: 118773.

    [72] [72] VEMPULURU N R, KANAKKAMPALAYAM KRISHNAN C, PARNAPALLI R, et al. Solar hydrogen generation from organic substance using earth abundant CuS-NiO heterojunction semiconductor photocatalyst[J]. Ceramics International, 2021, 47(7): 10206-10215.

    [73] [73] MAHADIK M A, PATIL R P, CHAE W S, et al. Microwave-assisted rapid synthesis of Cu2S∶ZnIn2S4 marigold-like nanoflower heterojunctions and enhanced visible light photocatalytic hydrogen production via Pt sensitization[J]. Journal of Industrial and Engineering Chemistry, 2022, 108: 203-214.

    [74] [74] RAO V N, RAVI P, SATHISH M, et al. Titanate quantum dots-sensitized Cu2S nanocomposites for superficial H2 production via photocatalytic water splitting[J]. International Journal of Hydrogen Energy, 2022, 47(95): 40379-40390.

    [75] [75] WU Y L, ZHANG H Y, LI Y J, et al. Partial phosphating of Ni-MOFs and Cu2S snowflakes form 2D/2D structure for efficiently improved photocatalytic hydrogen evolution[J]. International Journal of Hydrogen Energy, 2022, 47(86): 36530-36542.

    [76] [76] WANG G R, QUAN Y K, YANG K C, et al. EDA-assisted synthesis of multifunctional snowflake-Cu2S/CdZnS S-scheme heterojunction for improved the photocatalytic hydrogen evolution[J]. Journal of Materials Science & Technology, 2022, 121: 28-39.

    [77] [77] HOU F Y, LIU F, WU H C, et al. In situ synthesis of Cu3P/P-doped g-C3N4 tight 2D/2D heterojunction boosting photocatalytic H2 evolution[J]. Chinese Journal of Chemistry, 2023, 41(2): 173-180.

    [78] [78] SARILMAZ A, GENC E, ASLAN E, et al. Photocatalytic hydrogen evolution via solar-driven water splitting by CuSbS2 with different shapes[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2020, 400: 112706.

    [79] [79] YU H Y, LIANG H O, BAI J, et al. Controllable growth of coral-like CuInS2 on one-dimensional SiO2 nanotube with super-hydrophilicity for enhanced photocatalytic hydrogen evolution[J]. International Journal of Hydrogen Energy, 2022, 47(66): 28410-28422.

    [80] [80] WANG Y, PENG J R, XU Y F, et al. Facile fabrication of CdSe/CuInS2 microflowers with efficient photocatalytic hydrogen production activity[J]. International Journal of Hydrogen Energy, 2022, 47(13): 8294-8302.

    Tools

    Get Citation

    Copy Citation Text

    YU Haiyan, LIANG Haiou, BAI Jie, LI Chunping. Research Progress of Photocatalytic Modification of Copper Based Sulfides[J]. Journal of Synthetic Crystals, 2023, 52(3): 394

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Jul. 13, 2022

    Accepted: --

    Published Online: Apr. 13, 2023

    The Author Email: Chunping LI (hgcp_li@126.com)

    DOI:

    CSTR:32186.14.

    Topics