Remote Sensing Technology and Application, Volume. 40, Issue 4, 923(2025)
A Review of Wetland Classification with High-resolution Remote Sensing Image based on Deep Learning
[1] [1] MAHDAVIS, SALEHIB, GRANGERJ, et al. Remote sensing for wetland classification: A comprehensive review[J]. GIScience & Remote Sensing, 2018, 55(5): 623-658. DOI: 10.1080/15481603.2017.1419602
[2] [2] TINERR W. Wetland indicators:A guide to wetland formation,identification, delineation,classification,and mapping[M].Boca Raton: CRC press, 2016.
[3] [3] MAOD H, WANGZ M, DUB J, et al. National wetland mapping in China: A new product resulting from object-based and hierarchical classification of Landsat 8 OLI images[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 164: 11-25. DOI: 10.1016/j.isprsjprs.2020.03.020
[4] [4] YANGYongxing. Main characteristics, progress and prospect of international wetland science research[J]. Progress in Geography, 2002, 21(2): 111-120.
[5] [5] MITSCHW J, BERNALB, HERNANDEZM E. Ecosystem services of wetlands[J]. International Journal of Biodiversity Science, Ecosystem Services & Management, 2015, 11(1): 1-4. DOI: 10.1080/21513732.2015.1006250
[6] [6] MOHAMMADIMANESHF, SALEHIB, MAHDIANPARIM, et al. Wetland water level monitoring using Interferometric Synthetic Aperture Radar (InSAR): A review[J]. Canadian Journal of Remote Sensing, 2018, 44(4): 247-262. DOI: 10.1080/07038992.2018.1477680
[7] [7] WERNERB A, JOHNSONW C, GUNTENSPERGENG R. Evidence for 20th century climate warming and wetland drying in the North American Prairie Pothole Region[J]. Ecology and Evolution, 2013, 3(10): 3471-3482. DOI: 10.1002/ece3.731
[8] [8] DAVIDSONN C.Ramsar convention on wetlands:Scope and implementation[M].The Wetland Book.Dordrecht:Springer Netherlands, 2018: 451-458. DOI: 10.1007/978-90-481-9659-3_113
[9] [9] MAHDIANPARIM, SALEHIB, MOHAMMADIMANESHF, et al. The first wetland inventory map of Newfoundland at a spatial resolution of 10 m using Sentinel-1 and Sentinel-2 data on the Google Earth Engine cloud computing platform[J]. Remote Sensing,2019,11(1):43. DOI:10.3390/rs11010043
[10] [10] FOURNIERR A,GRENIERM,LAVOIEA,et al.Towards a strategy to implement the Canadian wetland Inventory using satellite remote sensing[J]. Canadian Journal of Remote Sensing, 2007, 33(Sup1): S1-S16. DOI:10.5589/m07-051
[11] [11] LAROCQUEA, PHIRIC, LEBLONB, et al. Wetland mapping with Landsat 8 OLI, Sentinel-1, ALOS-1 PALSAR, and LiDAR data in Southern New Brunswick, Canada[J]. Remote Sensing, 2020, 12(13): 2095. DOI: 10.3390/rs12132095
[12] [12] MOHAMMADIMANESHF, SALEHIB, MAHDIANPARIM, et al. Full and simulated compact polarimetry SAR responses to Canadian wetlands: Separability analysis and classification[J]. Remote Sensing, 2019, 11(5): 516. DOI: 10.3390/rs11050516
[13] [13] AMANIM, BRISCOB, MAHDAVIS, et al. Evaluation of the Landsat-based Canadian wetland inventory map using multiple sources: Challenges of large-scale wetland classification using remote sensing[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020, 14: 32-52.
[14] [14] MCCARTHYM J, RADABAUGHK R, MOYERR P, et al. Enabling efficient, large-scale high-spatial resolution wetland mapping using satellites[J]. Remote Sensing of Environment, 2018, 208: 189-201. DOI: 10.1016/j.rse.2018.02.021
[15] [15] ADAME, MUTANGAO, RUGEGED. Multispectral and hyperspectral remote sensing for identification and mapping of wetland vegetation: A review[J]. Wetlands Ecology and Management, 2010, 18(3): 281-296. DOI: 10.1007/s11273-009-9169-z
[16] [16] MCCARTHYM J, MERTONE J, MULLER-KARGERF E. Improved coastal wetland mapping using very-high 2-meter spatial resolution imagery[J]. International Journal of Applied Earth Observation and Geoinformation, 2015, 40: 11-18. DOI: 10.1016/j.jag.2015.03.011
[17] [17] LANEC R, ANENKHONOVO, LIUH X, et al. Classification and inventory of freshwater wetlands and aquatic habitats in the Selenga River Delta of Lake Baikal, Russia, using high-resolution satellite imagery[J]. Wetlands Ecology and Management, 2015, 23(2): 195-214. DOI: 10.1007/s11273-014-9369-z
[18] [18] ZIKOPOULOSP, EATONC. Understanding big data: Analytics for enterprise class Hadoop and streaming data[M]. New York: McGraw-Hill Osborne Media, 2011.
[19] [19] YOUPeipei, LIUZhenbo, XIEJiawei, et al. Research on deep learning algorithm remote sensing classification of Jiangsu coastal wetlands based on GF-2 image[J]. Resources and Environment in the Yangtze Basin, 2021, 30(7): 1659-1669.
[20] [20] TANGYuqi. Research on object-oriented detection of multi-feature changes in cities with high resolution images[D]. Wuhan: Wuhan University, 2013.
[21] [21] ZHUHongchun, CAILijie, LIUHaiying, et al. Optimal segmentation scale calculation for high-resolution remote sensing image[J]. Science of Surveying and Mapping, 2015, 40(3): 71-75.
[22] [22] TAOYiting. Research on classification method of high spatial resolution remote sensing images based on deep learning[D]. Wuhan: Wuhan University, 2019.
[23] [23] GOODFELLOWI, BENGIOY, COURVILLEA. Deep learning[M]. Cambridge, MA: MIT Press, 2016.
[24] [24] VALIA, COMAIS, MATTEUCCIM. Deep learning for land use and land cover classification based on hyperspectral and multispectral earth observation data: A review[J]. Remote Sensing, 2020, 12(15): 2495. DOI: 10.3390/rs12152495
[25] [25] ROGANJ, CHEND M. Remote sensing technology for mapping and monitoring land-cover and land-use change[J]. Progress in Planning, 2004, 61(4): 301-325. DOI: 10.1016/S0305-9006(03)00066-7
[26] [26] GONZALEZE, GONZÁLEZ TRILLAG, MARTIN LSAN, et al. Vegetation patterns in a South American coastal wetland using high-resolution imagery[J].Journal of Maps,2019,15(2):642-650. DOI:10.1080/17445647.2019.1644545
[27] [27] DECHKAJ A, FRANKLINS E, WATMOUGHM D, et al. Classification of wetland habitat and vegetation communities using multi-temporal Ikonos imagery in southern Saskatchewan[J]. Canadian Journal of Remote Sensing, 2002, 28(5): 679-685. DOI: 10.5589/m02-064
[28] [28] ADAME,MURERIWAN, NEWETES. Mapping Prosopis Glandulosa (mesquite) in the semi-arid environment of South Africa using high-resolution WorldView-2 imagery and machine learning classifiers[J]. Journal of Arid Environments, 2017, 145: 43-51. DOI: 10.1016/j.jaridenv.2017.05.001
[29] [29] MCCARTHYM J, MERTONE J, MULLER-KARGERF E. Improved coastal wetland mapping using very-high 2-meter spatial resolution imagery[J]. International Journal of Applied Earth Observation and Geoinformation, 2015, 40: 11-18. DOI: 10.1016/j.jag.2015.03.011
[30] [30] AMANIM, SALEHIB, MAHDAVIS, et al. Wetland classification using multi-source and multi-temporal optical remote sensing data in Newfoundland and Labrador, Canada[J]. Canadian Journal of Remote Sensing, 2017, 43(4): 360-373. DOI: 10.1080/07038992.2017.1346468
[31] [31] MITSCHW J, GOSSELINKJ G. Wetlands[M]. Hoboken, NJ: John Wiley & Sons, 2015.
[32] [32] SOUTHR. Biogeography and Ecology of the Island of Newfoundland[M]. Cham: Springer Netherlands, 1983.
[33] [33] HEZ, HED, MEIX Q, et al. Wetland classification based on a new efficient generative adversarial network and Jilin-1 satellite image[J].Remote Sensing,2019,11(20):2455. DOI:10.3390/rs11202455
[34] [34] JAMALIA, MAHDIANPARIM, MOHAMMADIMANESHF, et al. A synergic use of Sentinel-1 and Sentinel-2 imagery for complex wetland classification using Generative Adversarial Network (GAN) scheme[J]. Water, 2021, 13(24): 3601. DOI: 10.3390/w13243601
[35] [35] LIUM, FUB L, XIES Y, et al. Comparison of multi-source satellite images for classifying marsh vegetation using DeepLabV3 Plus deep learning algorithm[J]. Ecological Indicators,2021,125:107562. DOI:10.1016/j.ecolind. 2021. 107562
[36] [36] SUNZ Y, JIANGW G, LINGZ Y, et al. Using multisource high-resolution remote sensing data (2 m) with a habitat-tide-semantic segmentation approach for mangrove mapping[J].Remote Sensing,2023,15(22):5271. DOI:10.3390/rs15225271
[37] [37] ZHANGY, WANGX, CAIJ Y, et al. MW-SAM: Mangrove wetland remote sensing image segmentation network based on segment anything model[J]. IET Image Processing, 2024, 18(14): 4503-4513. DOI: 10.1049/ipr2.13263
[38] [38] CHENZ Z, CHENJ J, YUEY M, et al. Tradeoffs among multi-source remote sensing images, spatial resolution, and accuracy for the classification of wetland plant species and surface objects based on the MRS_DeepLabV3+ model[J].Ecolo-gical Informatics,2024,81:102594. DOI:10.1016/j.ecoinf.-2024.102594
[39] [39] EVERITTJ H, YANGC, FLETCHERR S, et al. Using aerial color-infrared photography and QuickBird satellite imagery for mapping wetland vegetation[J]. Geocarto International, 2004, 19(4): 15-22. DOI: 10.1080/10106040408542323
[40] [40] DUL, MCCARTYG W, ZHANGX, et al. Mapping forested wetland inundation in the Delmarva Peninsula, USA using deep convolutional neural networks[J]. Remote Sensing, 2020, 12(4): 644. DOI: 10.3390/rs12040644
[41] [41] REZAEEM, MAHDIANPARIM, ZHANGY, et al. Deep convolutional neural network for complex wetland classification using optical remote sensing imagery[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing,2018,11(9):3030-3039. DOI:10.1109/JSTARS. 2018.2846178
[42] [42] SONGY M, ZHANGJ. Monitoring and simulating the distribution of phytoplankton in constructed wetlands based on SPOT 6 images[J]. Open Geosciences, 2021, 13(1): 454-468. DOI: 10.1515/geo-2020-0243
[43] [43] DARLINGE M, RAUDSEPSJ G. Non-parametric unsupervised learning with applications to image classification[J]. Pattern Recognition, 1970, 2(4): 313-335. DOI: 10.1016/0031-3203(70)90021-X
[44] [44] BLANZIERIE, MELGANIF. Nearest neighbor classification of remote sensing images with the maximal margin principle[J]. IEEE Transactions on Geoscience and Remote Sensing,2008,46(6):1804-1811. DOI:10.1109/TGRS. 2008. 916090
[45] [45] GONÇALVESM L, NETTOM L A, COSTAJ A F, et al. An unsupervised method of classifying remotely sensed images using Kohonen self-organizing maps and agglomerative hierarchical clustering methods[J]. International Journal of Remote Sensing, 2008, 29(11): 3171-3207. DOI: 10.1080/01431160701442146
[46] [46] DRONOVAI, GONGP, WANGL. Object-based analysis and change detection of major wetland cover types and their classification uncertainty during the low water period at Poyang Lake, China[J]. Remote Sensing of Environment, 2011, 115(12): 3220-3236. DOI: 10.1016/j.rse.2011.07.006
[47] [47] BERHANET M, LANEC R, WUQ S, et al. Decision-tree, rule-based, and random forest classification of high-resolution multispectral imagery for wetland mapping and inventory[J]. Remote Sensing, 2018, 10(4): 580. DOI: 10.3390/rs10040580
[48] [48] SALEHI HIKOUEII, KIMS S, MISHRAD R. Machine-learning classification of soil bulk density in salt marsh environments[J]. Sensors, 2021, 21(13): 4408. DOI: 10.3390/s21134408
[49] [49] MOAYEDIH, JAMALIA, GIBRILM B A, et al. Evaluation of tree-base data mining algorithms in land used/land cover mapping in a semi-arid environment through Landsat-8 OLI image;Shiraz,Iran[J]. Geomatics, Natural Hazards and Risk,2020,11(1):724-741. DOI:10.1080/19475705. 2020. 1745902
[50] [50] CARLEM V, WANGL, SASSERC E. Mapping freshwater marsh species distributions using WorldView-2 high-resolution multispectral satellite imagery[J]. International Journal of Remote Sensing,2014,35(13):4698-4716. DOI:10.1080/01431161.2014.919685
[51] [51] MARTÍNEZ PRENTICER, VILLOSLADA PECIÑAM, WARDR D, et al. Machine learning classification and accuracy assessment from high-resolution images of coastal wetlands[J]. Remote Sensing, 2021, 13(18): 3669. DOI: 10.3390/rs13183669
[52] [52] WANGX X, GAOX W, ZHANGY Z, et al. Land-cover classification of coastal wetlands using the RF algorithm for Worldview-2 and Landsat 8 images[J]. Remote Sensing, 2019, 11(16): 1927. DOI: 10.3390/rs11161927
[53] [53] HANX S,PANJ Y,DEVLINA T. Remote sensing study of wetlands in the Pearl River Delta during 1995~2015 with the support vector machine method[J]. Frontiers of Earth Science,2018,12(3):521-531. DOI:10.1007/s11707-017-0672-x
[54] [54] WANGLiguo, ZHAOLiang, LIUDanfeng. A review on the application of SVM in hyperspectral image processing[J]. Journal of Harbin Engineering University, 2018, 39(6): 973-983.
[55] [55] MOUNTRAKISG, IM J, OGOLEC. Support vector machines in remote sensing: A review[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2011, 66(3): 247-259. DOI: 10.1016/j.isprsjprs.2010.11.001
[56] [56] DEVALK, JOSHIP K. Vegetation type and land cover mapping in a semi-arid heterogeneous forested wetland of India: Comparing image classification algorithms[J]. Environment, Development and Sustainability, 2022, 24(3): 3947-3966. DOI: 10.1007/s10668-021-01596-6
[57] [57] ZHAOW Z, DUS H. Spectral–spatial feature extraction for hyperspectral image classification: A dimension reduction and deep learning approach[J]. IEEE Transactions on Geoscience and Remote Sensing,2016,54(8):4544-4554. DOI:10.1109/TGRS.2016.2543748
[58] [58] SUNXian, FUKun, WANGHongqi. Spatial semantic objects-based hybrid learning method for automatic complicated scene classification[J]. Journal of Electronics & Information Technology, 2011, 33(2): 347-354.
[59] [59] ZHAOW Z, DUS H. Learning multiscale and deep representations for classifying remotely sensed imagery[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2016, 113: 155-165. DOI: 10.1016/j.isprsjprs.2016.01.004
[60] [60] FARABETC, COUPRIEC, NAJMANL, et al. Learning hierarchical features for scene labeling[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(8): 1915-1929. DOI: 10.1109/TPAMI.2012.231
[61] [61] HEK M,ZHANGX Y,RENS Q, et al. Deep residual learning for image recognition[C]∥Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR).IEEE,2016:770-778. DOI:10.1109/CVPR. 2016.90
[62] [62] MARTINSV S, KALEITAA L, GELDERB K, et al. Deep neural network for complex open-water wetland mapping using high-resolution WorldView-3 and Airborne LiDAR data[J]. International Journal of Applied Earth Observation and Geoinformation, 2020, 93: 102215. DOI: 10.1016/j.jag.2020.102215
[63] [63] ZHUX X, TUIAD, MOUL C, et al. Deep learning in remote sensing: A comprehensive review and list of resources[J]. IEEE Geoscience and Remote Sensing Magazine, 2017, 5(4): 8-36. DOI: 10.1109/MGRS.2017.2762307
[64] [64] CHENGG, XIEX X, HANJ W, et al. Remote sensing image scene classification meets deep learning: Challenges, methods, benchmarks, and opportunities[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020, 13: 3735-3756.
[65] [65] MAHDIANPARIM,SALEHIB,REZAEEM,et al.Very deep convolutional neural networks for complex land cover mapping using multispectral remote sensing imagery[J]. Remote Sensing, 2018, 10(7): 1119. DOI: 10.3390/rs10071119
[66] [66] JAMALIA, MAHDIANPARIM, BRISCOB, et al. Comparing solo versus ensemble convolutional neural networks for wetland classification using multi-spectral satellite imagery[J]. Remote Sensing, 2021, 13(11): 2046. DOI: 10.3390/rs13112046
[67] [67] CHENM M, KEY H, BAIJ H, et al. Monitoring early stage invasion of exotic Spartina alterniflora using deep-learning super-resolution techniques based on multisource high-resolution satellite imagery: A case study in the Yellow River Delta, China[J]. International Journal of Applied Earth Observation and Geoinformation, 2020, 92: 102180. DOI: 10.1016/j.jag.2020.102180
[68] [68] LIC, CUIH W, TIANX L. A novel CA-RegNet model for Macau wetlands auto segmentation based on GF-2 remote sensing images[J]. Applied Sciences, 2023, 13(22): 12178. DOI: 10.3390/app132212178
[69] [69] CAOYangjie,JIALili,CHENYongxia,et al.Review of computer vision based on generative adversarial networks[J].Journal of Image and Graphics,2018,23(10):1433-1449.
[70] [70] SONGT A,CHOWDHURYS R,YANGF, et al. PET image super-resolution using generative adversarial networks[J]. Neural Networks,2020,125:83-91. DOI:10.1016/j.neunet.2020.01.029
[71] [71] YEChen,GUANWei. A review of application of generative adversarial networks[J]. Journal of Tongji University(Natural Science Edition), 2020,48(4):591-601.
[72] [72] HANW, FENGR Y, WANGL Z, et al. A semi-supervised generative framework with deep learning features for high-resolution remote sensing image scene classification[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2018, 145: 23-43. DOI: 10.1016/j.isprsjprs.2017.11.004
[73] [73] SUH S, LEEH, LUKOWICZP, et al. CEGAN: Classification enhancement generative adversarial networks for unraveling data imbalance problems[J]. Neural Networks, 2021, 133: 69-86. DOI: 10.1016/j.neunet.2020.10.004
[74] [74] ZHANGH Y, SONGY Y, HANC, et al. Remote sensing image spatiotemporal fusion using a generative adversarial network[J]. IEEE Transactions on Geoscience and Remote Sensing,2021,59(5):4273-4286. DOI:10.1109/TGRS. 2020. 3010530
Get Citation
Copy Citation Text
Jing YANG, Hui ZHAO, Yaohua LUO, Jundi WANG. A Review of Wetland Classification with High-resolution Remote Sensing Image based on Deep Learning[J]. Remote Sensing Technology and Application, 2025, 40(4): 923
Category:
Received: Aug. 20, 2024
Accepted: --
Published Online: Aug. 26, 2025
The Author Email: Hui ZHAO (zhaohui@imde.ac.cn)