Laser Journal, Volume. 46, Issue 3, 161(2025)
Satellite 6D position estimation method based on improved DenseFusion
[3] [3] Ng P C, Henikoff S. SIFT: Predicting amino acid changes that affect protein function[J]. Nucleic acids research, 2003, 31(13): 3812-3814.
[4] [4] Bay H, Tuytelaars T, Van Gool L. Surf: Speeded up robust features[C]//Computer Vision-ECCV 2006: 9th European Conference on Computer Vision, Graz, Austria, May 7-13, 2006. Proceedings, Part I 9. Springer Berlin Heidelberg, 2006: 404-417.
[5] [5] Rublee E, Rabaud V, Konolige K, et al. ORB: An efficient alternative to SIFT or SURF[C]//2011 International conference on computer vision. Ieee, 2011: 2564-2571.
[6] [6] Hinterstoisser S, Holzer S, Cagniart C, et al. Multimodal templates for real-time detection of texture-less objects in heavily cluttered scenes[C]//2011 international conference on computer vision. IEEE, 2011: 858-865.
[7] [7] Rad M, Lepetit V. Bb8: A scalable, accurate, robust to partial occlusion method for predicting the 3d poses of challenging objects without using depth[C]//Proceedings of the IEEE international conference on computer vision. 2017: 3828-3836.
[8] [8] Gao X S, Hou X R, Tang J, et al. Complete solution classification for the perspective - three - point problem[J]. IEEE transactions on pattern analysis and machine intelligence, 2003, 25(8): 930-943.
[9] [9] Tekin B, Sinha S N, Fua P. Real-time seamless single shot 6d object pose prediction[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2018: 292-301.
[10] [10] Xiang Y, Schmidt T, Narayanan V, et al. Posecnn: A convolutional neural network for 6d object pose estimation in cluttered scenes[J]. arxiv preprint arxiv: 1711.00199, 2017.
[11] [11] Do T T, Cai M, Pham T, et al. Deep-6dpose: Recovering 6d object pose from a single rgb image[J]. arxiv preprint arxiv: 1802.10367, 2018.
[12] [12] Wang C, Xu D, Zhu Y, et al. Densefusion: 6d object pose estimation by iterative dense fusion[C]//Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2019: 3343-3352.
[14] [14] Chen J, Kao S, He H, et al. Run, Don’t walk: Chasing higher FLOPS for faster neural networks[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2023: 12021-12031.
[15] [15] Guo M H, Lu C Z, Liu Z N, et al. Visual attention network[J]. Computational Visual Media, 2023, 9(4): 733-752.
[17] [17] Kehl W, Manhardt F, Tombari F, et al. Ssd-6d: Making rgb-based 3d detection and 6d pose estimation great again[C]//Proceedings of the IEEE international conference on computer vision. 2017: 1521-1529.
[18] [18] Peng S, Liu Y, Huang Q, et al. Pvnet: Pixel-wise voting network for 6dof pose estimation[C]//Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2019: 4561-4570.
[19] [19] Zakharov S, Shugurov I, Ilic S. Dpod: 6d pose object detector and refiner[C]//Proceedings of the IEEE/CVF international conference on computer vision. 2019: 1941-1950.
[20] [20] Xu D, Anguelov D, Jain A. Pointfusion: Deep sensor fusion for 3d bounding box estimation[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2018: 244-253.
[21] [21] Yu P, Rao Y, Lu J, et al. P2gnet: Pose-guided point cloud generating networks for 6-dof object pose estimation[J]. arxiv preprint arxiv: 1912.09316, 2019.
[22] [22] Jiang X, Li D, Chen H, et al. Uni6d: A unified cnn framework without projection breakdown for 6d pose estimation[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2022: 11174-11184.
Get Citation
Copy Citation Text
WANG Jincong, YANG Haifeng, SONG Wenlong, TANG Puran, YU Zhichao. Satellite 6D position estimation method based on improved DenseFusion[J]. Laser Journal, 2025, 46(3): 161
Category:
Received: Sep. 13, 2024
Accepted: Jun. 12, 2025
Published Online: Jun. 12, 2025
The Author Email: Wenlong SONG (772087880@qq.com)