Chinese Journal of Lasers, Volume. 47, Issue 6, 600001(2020)

Computing on Silicon Photonic Platform

Zhou Zhiping1,2,3, Xu Pengfei1、*, and Dong Xiaowen4
Author Affiliations
  • 1State Key Laboratory of Advanced Optical Communication Systems and Networks, Department of Electronics,School of Electronics Engineering and Computer Science, Peking University, Beijing 100871, China
  • 2Peking University Shenzhen Research Institute, Shenzhen, Guangdong 518057, China
  • 3Nano-Optoelectronics Frontier Center of Ministry of Education, Peking University, Beijing 100871, China
  • 4Data Center Technology Lab, Central Research Institute, Huawei Technology Co., Ltd.,Shenzhen, Guangdong 518000, China
  • show less
    References(53)

    [1] Zhou Z P[M]. Silicon photonics, 8(2012).

    [4] Sun C, Wade M T, Lee Y et al. Single-chip microprocessor that communicates directly using light[J]. Nature, 528, 534-538(2015).

    [5] Liu W L, Li M, Guzzon R S et al. A fully reconfigurable photonic integrated signal processor[J]. Nature Photonics, 10, 190-195(2016).

    [6] Ribeiro A, Ruocco A, Vanacker L et al. Demonstration of a 4×4-port universal linear circuit[J]. Optica, 3, 1348-1357(2016).

    [7] Kitayama K I, Notomi M, Naruse M et al. Novel frontier of photonics for data processing: photonic accelerator[J]. APL Photonics, 4, 090901(2019).

    [11] Sze V, Chen Y H, Yang T J et al. Efficient processing of deep neural networks: a tutorial and survey[J]. Proceedings of the IEEE, 105, 2295-2329(2017).

    [12] LeCun Y, Bengio Y, Hinton G E. Deep learning[J]. Nature, 521, 436-444(2015).

    [13] Schmidhuber J. Deep learning in neural networks: an overview[J]. Neural Networks, 61, 85-117(2015).

    [14] OpenAI. AI. -05-16)[2020-03-13]. https:∥openai.com/blog/ai-and-compute/.(2018).

    [15] Harris N C, Carolan J, Bunandar D et al. Linear programmable nanophotonic processors[J]. Optica, 5, 1623-1631(2018).

    [17] Miller D A B. Perfect optics with imperfect components[J]. Optica, 2, 747-750(2015).

    [18] Clements W R, Humphreys P C, Metcalf B J et al. Optimal design for universal multiport interferometers[J]. Optica, 3, 1460-1465(2016).

    [19] Shen Y C, Harris N C, Skirlo S et al. Deep learning with coherent nanophotonic circuits[J]. Nature Photonics, 11, 441-446(2017).

    [20] Hamerly R, Bernstein L, Sludds A et al. Large-scale optical neural networks based on photoelectric multiplication[J]. Physical Review X, 9, 021032(2019).

    [21] Williamson I A D, Hughes T W, Minkov M et al. Reprogrammable electro-optic nonlinear activation functions for optical neural networks[J]. IEEE Journal of Selected Topics in Quantum Electronics, 26, 7700412(2020).

    [22] Bangari V, Marquez B A, Miller H et al. Digitalelectronics and analog photonics for convolutional neural networks (DEAP-CNNS)[J]. IEEE Journal of Selected Topics in Quantum Electronics, 26, 7701213(2020).

    [23] Fang M Y S, Manipatruni S, Wierzynski C et al. Design of optical neural networks with component imprecisions[J]. Optics Express, 27, 14009-14029(2019).

    [24] Bagherian H, Skirlo S, Shen Y C et al[2020-04-26]. On-chip optical convolutional neural networks [2020-04-26].https:∥www.researchgate.net/publication/326988082_On-Chip_Optical_Convolutional_Neural_Networks..

    [25] Hughes T W, Minkov M, Shi Y et al. Training of photonic neural networks through in situ backpropagation and gradient measurement[J]. Optica, 5, 864-871(2018).

    [26] Haribara Y, Utsunomiya S, Yamamoto Y. Acoherent Ising machine for MAX-CUT problems: performance evaluation against semidefinite programming and simulated annealing[M]. ∥Principles and Methods of Quantum Information Technologies. Tokyo: Springer, 251-262(2016).

    [27] Roques-Carmes C, Shen Y C, Zanoci C et al. Heuristic recurrent algorithms for photonic Ising machines[J]. Nature Communications, 11, 249(2020).

    [28] Bohm F, Inagaki T, Inaba K et al. Understanding dynamics of coherent Ising machines through simulation of large-scale 2D Ising models[J]. Nature Communications, 9, 5020(2018).

    [29] Inagaki T, Haribara Y, Igarashi K et al. A coherent Ising machine for 2000-node optimization problems[J]. Science, 354, 603-606(2016).

    [30] Inagaki T, Inaba K, Hamerly R et al. Large-scale Ising spin network based on degenerate optical parametric oscillators[J]. Nature Photonics, 10, 415-419(2016).

    [31] McMahon P L, Marandi A, Haribara Y et al. A fully programmable 100-spin coherent Ising machine withall-to-all connections[J]. Science, 354, 614-617(2016).

    [32] Roques-Carmes C. Solja i M. Photonic Ising machines go big[J]. Physics, 12, 61(2019).

    [33] Pierangeli D, Marcucci G, Conti C. Large-scale photonic Ising machine by spatial light modulation[J]. Physical Review Letters, 122, 213902(2019).

    [35] Duport F, Smerieri A, Akrout A et al. Fully analogue photonic reservoir computer[J]. Scientific Reports, 6, 22381(2016).

    [36] Takano K, Sugano C, Inubushi M et al. Compact reservoir computing with a photonic integrated circuit[J]. Optics Express, 26, 29424-29439(2018).

    [37] Vandoorne K. Mechet P, van Vaerenbergh T, et al. Experimental demonstration of reservoir computing on a silicon photonics chip[J]. Nature Communications, 5, 3541(2014).

    [38] Zhou J H. All-optical discrete Fourier transform based on multimode interference couplers[J]. IEEE Photonics Technology Letters, 22, 1093-1095(2010).

    [40] Hall T J, Hasan M. Universal discrete Fourier optics RF photonic integrated circuit architecture[J]. Optics Express, 24, 7600-7610(2016).

    [41] Kou S S, Yuan G H, Wang Q et al. On-chip photonic Fourier transform with surface plasmon polaritons[J]. Light-Science & Applications, 5, e16034(2016).

    [42] Ferrera M, Park Y, Razzari L et al. On-chip CMOS-compatible all-optical integrator[J]. Nature Communications, 1, 29(2010).

    [43] Mohammadi Estakhri N, Edwards B, Engheta N. Inverse-designed metastructures that solve equations[J]. Science, 363, 1333-1338(2019).

    [44] Wang J W, Paesani S, Ding Y H et al. Multidimensional quantum entanglement with large-scale integrated optics[J]. Science, 360, 285-291(2018).

    [45] Qiang X G, Zhou X Q, Wang J W et al. Large-scale silicon quantum photonics implementing arbitrary two-qubit processing[J]. Nature Photonics, 12, 534-539(2018).

    [46] Ponulak F, Kasinski A. Introduction to spiking neural networks: information processing, learning and applications[J]. Acta Neurobiologiae Experimentalis, 71, 409-433(2011).

    [47] Cheng Z G, Ríos C. Pernice W H P, et al. On-chip photonic synapse[J]. Science Advances, 3, e1700160(2017).

    [48] Peng H T. Nahmias M A, de Lima T F, et al. Neuromorphic photonic integrated circuits[J]. IEEE Journal of Selected Topics in Quantum Electronics, 24, 6101715(2018).

    [49] Shastri B J, Tait A N. Ferreira de Lima T, et al. Neuromorphic photonics, principles of[M]. ∥Encyclopedia of complexity and systems science. Berlin, Heidelberg: Springer, 1-37(2018).

    [50] Chakraborty I, Saha G, Sengupta A et al. Toward fast neural computing using all-photonic phase change spiking neurons[J]. Scientific Reports, 8, 12980(2018).

    [51] Feldmann J, Youngblood N, Wright C D et al. All-optical spiking neurosynaptic networks with self-learning capabilities[J]. Nature, 569, 208-214(2019).

    [52] Tait A N[2020-03-13]. Lima T F D, Nahmias M A, et al. A silicon photonic modulator neuron[2020-03-13]. https:∥www.researchgate.net/publication/330034758_A_silicon_photonic_modulator_neuron..

    Tools

    Get Citation

    Copy Citation Text

    Zhou Zhiping, Xu Pengfei, Dong Xiaowen. Computing on Silicon Photonic Platform[J]. Chinese Journal of Lasers, 2020, 47(6): 600001

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: reviews

    Received: Mar. 13, 2020

    Accepted: --

    Published Online: Jun. 3, 2020

    The Author Email: Pengfei Xu (xupengf@pku.edu.cn)

    DOI:10.3788/CJL202047.0600001

    Topics