Opto-Electronic Engineering, Volume. 50, Issue 7, 230079(2023)

Axial attention-guided anchor classification lane detection

Xin Luo, Yingping Huang*, and Zhenming Liang
Author Affiliations
  • School of Opto-Electronic and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
  • show less
    Figures & Tables(13)
    Schematic diagram of the anchor division in a row
    Description of lane line definition and selection of row anchor and column anchor. (a) The definition of lane line in CULane dataset[2]; (b) Left ego lane and right ego lane; (c) Left side lane and right side lane
    Schematic diagram of positioning error generation
    Description of the network architecture
    Details of the backbone network
    Schematic diagram of the attention structure of the axial. It includes two multi-head attention mechanisms
    Schematic diagram of axial attention
    Visualization of the CULane and TuSimple dataset
    • Table 1. Datasets description

      View table
      View in Article

      Table 1. Datasets description

      数据集总数据训练集验证集测试集分辨率车道数环境场景
      TuSimple6408326835827821280×720≤51高速公路
      CULane133235888809675346801640×590≤49城区和高速公路
    • Table 2. Hyperparameter settings on different datasets.

      View table
      View in Article

      Table 2. Hyperparameter settings on different datasets.

      数据集TuSimpleCULane
      行数量5618
      列数量4040
      每一行单元格数量(行锚点数量)100200
      每一列单元格数量(列锚点数量)100100
      使用行锚分类车道线数量22
      使用列锚分类车道线数量22
    • Table 3. Ablation results

      View table
      View in Article

      Table 3. Ablation results

      行锚列锚轴注意力精度/TuSimple精度/CULane
      95.5564.72
      95.8971.34
      95.9165.61
      95.9273.05
    • Table 4. Comparison with other methods on the TuSimple dataset

      View table
      View in Article

      Table 4. Comparison with other methods on the TuSimple dataset

      方法F1/%Acc/%FP/%FN/%
      注:N/A表示相关论文没有提及该内容。
      基于分割的方法SCNN[2]95.9796.536.171.80
      SAD[6]95.9296.646.022.05
      LaneNet[7]N/A96.407.802.44
      DALaneNet[8]N/A95.868.203.16
      基于参数曲线的方法BezierLaneNet (ResNet34)[15]N/A95.655.103.90
      基于检测的方法E2E (ResNet34)[10]N/A96.223.214.28
      LaneATT (ResNet18)[14]96.7195.573.563.01
      UFLD (ResNet34)[11]N/A95.5519.354.30
      UFLDv2 (ResNet18)[12]96.1195.923.164.59
      Ours (ResNet34)96.6495.922.414.29
    • Table 5. Comparison of F1 on CULane dataset

      View table
      View in Article

      Table 5. Comparison of F1 on CULane dataset

      方法NormalCrowdDazzleShadowNo-lineArrowCurveCrossNightAverageFPS
      注:N/A表示相关论文没有提及该内容。
      基于分割的方法
      SCNN[2]90.669.758.566.943.484.164.4199066.171.68
      SAD[6]90.168.860.265.941.684.065.7199866.070.875
      基于参数曲线的方法
      BezierLaneNet (ResNet18)[15]90.271.662.570.945.384.159.099668.773.7N/A
      基于检测的方法
      E2E (ResNet34)[10]90.469.961.568.145.083.769.8207763.271.5N/A
      CLRNet (ResNet34)[13]93.378.373.779.753.190.371.6132175.176.9103
      LaneATT (ResNet18)[14]91.173.065.770.948.485.568.4117069.075.1250
      LaneATT (ResNet34)[14]92.175.066.578.249.488.467.7133070.776.7171
      UFLD (ResNet18)[11]89.368.062.263.040.783.558.2174362.969.7323
      UFLD (ResNet34)[11]89.568.757.269.241.784.759.3203765.470.9175
      UFLDv2 (ResNet18)[12]92.074.063.272.445.087.769.0199869.875.0330
      Ours (ResNet34)92.674.965.675.549.088.269.8186470.976.0171
    Tools

    Get Citation

    Copy Citation Text

    Xin Luo, Yingping Huang, Zhenming Liang. Axial attention-guided anchor classification lane detection[J]. Opto-Electronic Engineering, 2023, 50(7): 230079

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Article

    Received: Apr. 7, 2023

    Accepted: Jul. 11, 2023

    Published Online: Sep. 25, 2023

    The Author Email:

    DOI:10.12086/oee.2023.230079

    Topics