Acta Laser Biology Sinica, Volume. 30, Issue 1, 1(2021)
Application and Research Progress of Photodynamic Therapy in the Treatment of Gastrointestinal Cancer
[1] [1] MCCAUGHAN J S, GUY J T, HAWLEY P, et al. Hematoporphyrin-derivative and photoradiation therapy of malignant tumors[J]. Lasers in Surgery & Medicine, 2010, 3(3): 199-209.
[2] [2] YANO T, HATOGAI K, MORIMOTO H, et al. Photodynamic therapy for esophageal cancer[J]. Gastrointestinal Endoscopy, 2017, 59(12): 2740-2749.
[3] [3] SOETIKNO R, KALTENBACH T, YEH R, et al. Endoscopic mucosal resection for early cancers of the upper gastrointestinal tract[J]. Journal of Clinical Oncology, 2005, 23(20): 4490-4498.
[4] [4] LI X S, LOVELL J F, YOON J, et al. Clinical development and potential of photothermal and photodynamic therapies for cancer[J]. Nature Reviews Clinical Oncology, 2020, 17(5): 657-674.
[5] [5] YOON I, LI J Z, SHIM Y K. Advance in photosensitizers and light delivery for photodynamic therapy[J]. Clinical Endoscopy, 2013, 46(1): 7-23.
[6] [6] MAISCH T, SZEIMIES R M, JORI G, et al. Antibacterial photodynamic therapy in dermatology[J]. Photochemical & Photobiological Sciences: Official Journal of the European Photochemistry Association and the European Society for Photobiology, 2004, 3(10): 907-917.
[7] [7] CASTANO A P, DEMIDOVA T N, HAMBLIN M R. Photosensitizers for photodynamic therapy: photochemistry in the service of oncology[J]. Current Pharmaceutical Design, 2016, 22(46): 6956-6974.
[8] [8] MA J, JIANG L. Photogeneration of singlet oxygen (1O2) and free radicals (Sen*-, O2*-) by tetra-brominated hypocrellin B derivative[J]. Free Radical Research, 2001, 35(6): 767-777.
[9] [9] JIA X, JIA L. Nanoparticles improve biological functions of phthalocyanine photosensitizers used for photodynamic therapy[J]. Current Drug Metabolism, 2012, 13(8): 1119-1122.
[10] [10] ZHAO B, HE Y Y. Recent advances in the prevention and treatment of skin cancer using photodynamic therapy[J]. Expert Review of Anticancer Therapy, 2010, 10(11): 1797-1809.
[11] [11] DEBELE T, PENG S, TSAI H C. Drug carrier for photodynamic cancer therapy[J]. International Journal of Molecular Sciences, 2015, 16(9): 22094.
[12] [12] KATHRIN M S, ROGER H B, STANLEY W B. New approaches to photodynamic therapy from types I, II and III to type IV using one or more photons[J]. Anti-Cancer Agents in Medicinal Chemistry, 2017, 17(2): 171-189.
[13] [13] ALLISON R R. Photodynamic therapy: oncologic horizons[J]. Future Oncology, 2014, 10(1): 123-142.
[14] [14] TARUN G, NITIN K J, GOUTAM R. Nanotechnology-based photodynamic therapy: concepts, advances, and perspectives[J]. Critical Reviews in Therapeutic Drug Carrier Systems Technology in Cancer Research & Treatment, 2015, 32(5): 389-439.
[15] [15] BARR H, DIX A J, KENDALL C, et al. Review article: the potential role for photodynamic therapy in the management of upper gastrointestinal disease[J]. Alimentary Pharmacology & Therapeutics, 2001, 15(3): 311-321.
[16] [16] POGUE B W, SHENG C, BENEVIDES J, et al. Protoporphyrin IX fluorescence photobleaching increases with the use of fractionated irradiation in the esophagus[J]. Journal of Biomedical Optics, 2008, 13(3): 034009.
[17] [17] WATSON J T, MOAWAD F J, VEERAPPAN G R, et al. The dose of omeprazole required to achieve adequate intraesophageal acid suppression in patients with gastroesophageal junction specialized intestinal metaplasia and Barrett’s esophagus[J]. Digestive Diseases and Sciences, 2013, 58(8): 2253-2260.
[18] [18] GRAY J, FULLARTON G M. Long term efficacy of photodynamic therapy (PDT) as an ablative therapy of high grade dysplasia in Barrett’s oesophagus[J]. Photodiagnosis and Photodynamic Therapy, 2013, 10(4): 561-565.
[19] [19] OVERHOLT B F, PANJEHPOUR M, HAYDEK J M. Photodynamic therapy for Barrett’s esophagus: follow-up in 100 patients[J]. Gastrointestinal Endoscopy, 1999, 49(1): 1-7.
[20] [20] OVERHOLT B F, LIDHTDALE C J, WANG K K, et al. Photodynamic therapy with porfimer sodium for ablation of high-grade dysplasia in Barrett’s esophagus: international, partially blinded, randomized phase III trial[J]. Gastrointestinal Endoscopy, 2005, 62(4): 488-498.
[21] [21] PENNATHUR A, FARKAS A, KRASINSKAS A M, et al. Esophagectomy for T1 esophageal cancer: outcomes in 100 patients and implications for endoscopic therapy[J]. Annals of Thoracic Surgery, 2009, 87(4): 1048-1054.
[22] [22] TACHIBANA M, HIRAHARA N, KINUGASA S, et al. Clinicopathologic features of superficial esophageal cancer: results of consecutive 100 patients[J]. Annals of Thoracic Surgery, 2008, 15(1): 104-116.
[23] [23] ALLENDE D, DUMOT J, YERIAN L. Esophageal squamous cell carcinoma arising after endoscopic ablation therapy of Barrett’s esophagus with high-grade dysplasia. Report of a case[J]. Diseases of the Esophagus, 2013, 26(3): 314-318.
[24] [24] TANAKA T, MATONO S, NAGANO T, et al. Photodynamic therapy for large superficial squamous cell carcinoma of the esophagus[J]. Gastrointestinal Endoscopy, 2011, 73(1): 1-6.
[25] [25] LIU H, LIU Y, WANG L, et al. Evaluation on short-term therapeutic effect of 2 porphyrin photosensitizer-mediated photodynamic therapy for esophageal cancer[J]. Technology in Cancer Research & Treatment, 2019, 18(5): 1-6.
[26] [26] ELEONORA F, ADONIS S, HAYDAR A N, et al. Salvage esophagectomy after failure of definitive radiochemotherapy for esophageal cancer[J]. Journal of Surgical Oncology, 2016, 114(7): 833-837.
[27] [27] YANO T, MUTO M, MINASHI K, et al. Long-term results of salvage photodynamic therapy for patients with local failure after chemoradiotherapy for esophageal squamous cell carcinoma[J]. Endoscopy, 2011, 43(8): 657-663.
[28] [28] HATOGAI K, YANO T, KOJIMA T, et al. Salvage photodynamic therapy for local failure after chemoradiotherapy for esophageal squamous cell carcinoma[J]. Gastrointestinal Endoscopy, 2016, 83(6): 1130-1139.e3.
[29] [29] YANO T, KASAI H, HORIMATSU T, et al. A multicenter phase II study of salvage photodynamic therapy using talaporfin sodium (ME2906) and a diode laser (PNL6405EPG) for local failure after chemoradiotherapy or radiotherapy for esophageal cancer[J]. Oncotarget, 2017, 8(13): 22135-22144.
[30] [30] LITLE V R, LUKETICH J D, CHRISTIE N A, et al. Photodynamic therapy as palliation for esophageal cancer: experience in 215 patients[J]. Annals of Thoracic Surgery, 2003, 76(5): 1687-1692.
[31] [31] LINDENMANN J, MATZI V, NEUBOECK N, et al. Individualized, multimodal palliative treatment of inoperable esophageal cancer: clinical impact of photodynamic therapy resulting in prolonged survival[J]. Lasers in Surgery and Medicine, 2012, 44(3): 189-198.
[32] [32] YOON H Y, CHEON Y K, CHOI H J, et al. Role of photodynamic therapy in the palliation of obstructing esophageal cancer[J]. Korean Journal of Internal Medicine, 2012, 27(3): 278-284.
[33] [33] NISHIWAKI N, TSUBOSA Y, NIIHARA M. Salvage esophagectomy with pancreatectomy for local recurrence of thoracic esophageal cancer after definitive chemoradiotherapy: a case report[J]. International Journal of Surgery Case Reports, 2018, 42: 85-89.
[34] [34] NAKAJO K, YODA Y, HORI K, et al. Technical feasibility of endoscopic submucosal dissection for local failure after chemoradiotherapy or radiotherapy for esophageal squamous cell carcinoma[J]. Gastrointestinal Endoscopy, 2018, 88(4): 637-646.
[35] [35] YANO T, MUTO M, MINASHI K, et al. Photodynamic therapy as salvage treatment for local failure after chemoradiotherapy in patients with esophageal squamous cell carcinoma: a phase II study[J]. International Journal of Cancer, 2012, 131(5): 1228-1234.
[36] [36] SPAANDER M C, BARON T H, SIERSEMA P D, et al. Esophageal stenting for benign and malignant disease: European Society of Gastrointestinal Endoscopy (ESGE) clinical guideline[J]. Endoscopy, 2016, 48(10): 939-948.
[37] [37] KACHAAMY T, PRAKASH R, KUNDRANDA M, et al. Liquid nitrogen spray cryotherapy for dysphagia palliation in patients with inoperable esophageal cancer[J]. Gastrointestinal Endoscopy, 2018, 88(3): 447-455.
[38] [38] CHEN B, XIONG L, CHEN W D, et al. Photodynamic therapy for middle-advanced stage upper gastrointestinal carcinomas: a systematic review and meta-analysis[J]. World Journal of Clinical Cases, 2018, 6(6): 650-658.
[39] [39] LIGHTDALE C J, HEIER S K, MARCON N E, et al. Photodynamic therapy with porfimer sodium versus thermal ablation therapy with Nd:YAG laser for palliation of esophageal cancer: a multicenter randomized trial[J]. Gastrointestinal Endoscopy, 1995, 42(6): 507-512.
[40] [40] WU H, MINAMIDE T, YANO T. Role of photodynamic therapy in the treatment of esophageal cancer[J]. Digestive Endoscopy, 2019, 31(5): 508-516.
[41] [41] HATOGAI K, YANO T, KOJIMA T, et al. Local efficacy and survival outcome of salvage endoscopic therapy for local recurrent lesions after definitive chemoradiotherapy for esophageal cancer[J]. Radiation Oncology, 2016, 11(1): 1-10.
[42] [42] TORATANI S, TANI R, KANDA T, et al. Photodynamic therapy using photofrin and excimer dye laser treatment for superficial oral squamous cell carcinomas with long-term follow up[J]. Photodiagnosis and Photodynamic Therapy, 2016, 14: 104-110.
[43] [43] MOY L S, FROST D, MOY S. Photodynamic therapy for photodamage, actinic keratosis, and acne in the cosmetic practice[J]. Facial Plastic Surgery Clinics of North America, 2020, 28(1): 135-148.
[44] [44] SODERLUND C, LINDER S. Covered metal versus plastic stents for malignant common bile duct stenosis: a prospective, randomized, controlled trial[J]. Gastrointestinal Endoscopy, 2006, 63(7): 986-995.
[45] [45] O’BRIEN S, HATFIELD A R, CRAIG P I, et al. A three year follow up of self expanding metal stents in the endoscopic palliation of longterm survivors with malignant biliary obstruction[J]. Gut, 1995, 36(4): 618-621.
[46] [46] KAHALEH M, MISHRA R, SHAMI V M, et al. Unresectable cholangiocarcinoma: comparison of survival in biliary stenting alone versus stenting with photodynamic therapy[J]. Clinical Gastroenterology and Hepatology, 2008, 6(3): 290-297.
[47] [47] HARSHA M, HARSHA T, SIRISH D, et al. Success of photodynamic therapy in palliating patients with nonresectable cholangiocarcinoma: a systematic review and meta-analysis[J]. Gastroenterology, 2017, 23(7): 1278-1288.
[48] [48] WAGNER A, DENZER U W, NEUREITER D, et al. Temoporfin improves efficacy of photodynamic therapy in advanced biliary tract carcinoma: a multicenter prospective phase II study[J]. Hepatology, 2015, 62(5): 1456-1465.
[49] [49] WITZIGMANN H, BERR F, RINGEL U, et al. Surgical and palliative management and outcome in 184 patients with hilar cholangiocarcinoma: palliative photodynamic therapy plus stenting is comparable to r1/r2 resection[J]. Annals of Surgery, 2006, 244(2): 230-239.
[50] [50] QUYN A J, ZIYAIE D, POLIGNANO F M, et al. Photodynamic therapy is associated with an improvement in survival in patients with irresectable hilar cholangiocarcinoma[J]. International Hepato-Pancreato-Biliary Association, 2009, 11(7): 570-577.
[51] [51] CHEON Y K, LEE T Y, LEE S M, et al. Longterm outcome of photodynamic therapy compared with biliary stenting alone in patients with advanced hilar cholangiocarcinoma[J]. International Hepato-Pancreato-Biliary Association, 2012, 14(3): 185-193.
[52] [52] LEE T Y, CHEON Y K, SHIM C S, et al. Photodynamic therapy prolongs metal stent patency in patients with unresectable hilar cholangiocarcinoma[J]. World Journal of Gastroenterology, 2012, 18(39): 5589-5594.
[53] [53] DOLAK W, SCHWAIGHOFER H, HELLMICH B, et al. Photodynamic therapy with polyhematoporphyrin for malignant biliary obstruction: a nationwide retrospective study of 150 consecutive applications[J]. United European Gastroenterology Journal, 2017, 5(1): 104-110.
[54] [54] PEREIRA S P, JITLAL M, DUGGAN M, et al. PHOTOSTENT-02: porfimer sodium photodynamic therapy plus stenting versus stenting alone in patients with locally advanced or metastatic biliary tract cancer[J]. European Society for Medical Oncology and Open Access Companion Journal to Annals of Oncology, 2018, 3(5): e000379.
[55] [55] HUGGETT M T, JERMYN M, GILLAMS A, et al. Phase I/II study of verteporfin photodynamic therapy in locally advanced pancreatic cancer[J]. British Journal of Cancer, 2014, 110(7): 1698-1704.
[56] [56] AZZOUZI A R, BARRET E, MOORE C M, et al. TOOKAD? soluble vascular-targeted photodynamic (VTP) therapy: determination of optimal treatment conditions and assessment of effects in patients with localised prostate cancer[J]. BJU International, 2013, 112(6): 766-774.
[57] [57] ?ZKAN M, HADI S E, TUN? ?, et al. Cucurbituril-capped hybrid conjugated oligomer-gold nanoparticles for combined photodynamic-photothermal therapy and cellular imaging[J]. American Chemical Society Applied Polymer Materials, 2020, 2(9): 3840-3849.
[58] [58] O’CONNOR A E, GALLAGHER W M, BYRNE A T. Porphyrin and nonporphyrin photosensitizers in oncology: preclinical and clinical advances in photodynamic therapy[J]. Photochemistry and Photobiology, 2009, 85(5): 1053-1074.
[59] [59] MINDT S, KARAMPINIS I, JOHN M, et al. Stability and degradation of indocyanine green in plasma, aqueous solution and whole blood[J]. Photochemical & Photobiological Sciences: Official Journal of the European Photochemistry Association and the European Society for Photobiology, 2018, 17(9): 1189-1196.
[60] [60] TANIGUCHI M, LINDSEY J S. Database of absorption and fluorescence spectra of >300 common compounds for use in photochemCAD[J]. Photochemistry and Photobiology, 2018, 94(2): 290-327.
[61] [61] PETROVIC L Z, XAVIERSELVAN M, KURIAKOSE M, et al. Mutual impact of clinically translatable near-infrared dyes on photoacoustic image contrast and in vitro photodynamic therapy efficacy[J]. Journal of Biomedical Optics, 2020, 25(6): 1-12.
[62] [62] NAMIKAWA T, FUJISAWA K, MUNEKAGE E, et al. Clinical application of photodynamic medicine technology using light-emitting fluorescence imaging based on a specialized luminous source[J]. Medical Molecular Morphology, 2018, 51(4): 187-193.
[63] [63] KISHI K, FUJIWARA Y, YANO M, et al. Usefulness of diagnostic laparoscopy with 5-aminolevulinic acid (ALA)-mediated photodynamic diagnosis for the detection of peritoneal micrometastasis in advanced gastric cancer after chemotherapy[J]. Surgery Today, 2016, 46(12): 1427-1434.
[64] [64] KISHI K, FUJIWARA Y, YANO M, et al. Diagnostic laparoscopy with 5-aminolevulinic-acid-mediated photodynamic diagnosis enhances the detection of peritoneal micrometastases in advanced gastric cancer[J]. Oncology, 2014, 87(5): 257-265.
[65] [65] KOIZUMI N, HARADA Y, MINAMIKAWA T, et al. Recent advances in photodynamic diagnosis of gastric cancer using 5-aminolevulinic acid[J]. World Journal of Gastroenterology, 2016, 22(3): 1289-1296.
[66] [66] ISOMOTO H, NANASHIMA A, SENOO T, et al. In vivo fluorescence navigation of gastric and upper gastrointestinal tumors by 5-aminolevulinic acid mediated photodynamic diagnosis with a laser-equipped video image endoscope[J]. Photodiagnosis and Photodynamic Therapy, 2015, 12(2): 201-208.
[67] [67] KISHI K, FUJIWARA Y, YANO M, et al. Staging laparoscopy using ALA-mediated photodynamic diagnosis improves the detection of peritoneal metastases in advanced gastric cancer[J]. Journal of Surgical Oncology, 2012, 106(3): 294-298.
[68] [68] MARI E, FLORIANI I, TINAZZI A, et al. Efficacy of adjuvant chemotherapy after curative resection for gastric cancer: a meta-analysis of published randomised trials. a study of the GISCAD (Gruppo Italiano per lo Studio dei Carcinomi dell’Apparato Digerente)[J]. Annals of Oncology: Offical Journal of the European Society for Medical Oncology, 2000, 11(7): 837-843.
[69] [69] MI D H, LI Z, YANG K H, et al. Surgery combined with intraoperative hyperthermic intraperitoneal chemotherapy (IHIC) for gastric cancer: a systematic review and meta-analysis of randomised controlled trials[J]. International Journal of Hyperthermia, 2013, 29(2): 156-167.
[70] [70] ILARIA B, NADIA B, FRANCESCA D F, et al. The role of different adjuvant therapies in locally advanced gastric adenocarcinoma[J]. Oncotarget, 2018, 9(74): 34022-34029.
[71] [71] TSUJIMOTO H, MORIMOTO Y, TAKAHATA R, et al. Photodynamic therapy using nanoparticle loaded with indocyanine green for experimental peritoneal dissemination of gastric cancer[J]. Cancer Science, 2014, 105(12): 1626-1630.
[72] [72] DOHMOTO M, HUNERBEIN M, SCHLAG P M. Palliative endoscopic therapy of rectal carcinoma[J]. European Journal of Cancer, 1996, 32 (1): 25-29.
[73] [73] HODGKINSON N, KRUGER C A, ABRAHAMSE H. Targeted photodynamic therapy as potential treatment modality for the eradication of colon cancer and colon cancer stem cells[J]. Tumour Biology, 2017, 39(10): 1-17.
[74] [74] ZHANG L W, FANG Y P, FANG J Y. Enhancement techniques for improving 5-aminolevulinic acid delivery through the skin[J]. Dermatologica Sinica, 2011, 29(1): 1-7.
[75] [75] FINNIN B C, MORGAN T M. Transdermal penetration enhancers: applications, limitations, and potential[J]. Journal of Pharmaceutical Sciences, 1999, 88(10): 955-958.
[76] [76] GODIN B, TOUITOU E. Transdermal skin delivery: predictions for humans from in vivo, ex vivo and animal models[J]. Advanced Drug Delivery Reviews, 2007, 59(11): 1152-1161.
[77] [77] LANKE S S, KOLLI C S, STROM J G, et al. Enhanced transdermal delivery of low molecular weight heparin by barrier perturbation[J]. International Journal of Pharmaceutics, 2009, 365(1/2): 26-33.
[78] [78] GOETZ M, WANG T D. Molecular imaging in gastrointestinal endoscopy[J]. Gastroenterology, 2010, 138(3): 828-833.
[79] [79] KIM J H, ROH Y J, KIM I W, et al. Targeted photodynamic therapy with colon cancer-specific peptide conjugated photosensitizer[J]. Photodiagnosis and Photodynamic Therapy, 2015, 12(3): 340.
[80] [80] MIN D, JEONG D, CHOI M G, et al. Photochemical tissue penetration via photosensitizer for effective drug penetration in a non-vascular tumor[J]. Biomaterials, 2015, 52: 484-493.
[81] [81] SPRING B Q, BRYAN S R, ZHENG L Z, et al. A photoactivable multi-inhibitor nanoliposome for tumour control and simultaneous inhibition of treatment escape pathways[J]. Nature Nanotechnology, 2016, 11(4): 378-387.
[82] [82] BAROLET D. Light-emitting diodes (LEDs) in dermatology[J]. Seminars in Cutaneous Medicine and Surgery, 2009, 27(4): 227-238.
[83] [83] YAMAGISHI K, KIRINO I, TAKAHASHI I, et al. Tissue-adhesive wirelessly powered optoelectronic device for metronomic photodynamic cancer therapy[J]. Nature Biomedical Engineering, 2019, 3(1): 27-36.
[84] [84] PARK S I, BRENNER D S, SHIN G, et al. Soft, stretchable, fully implantable miniaturized optoelectronic systems for wireless optogenetics[J]. Nature Biotechnology, 2015, 33(12): 1280-1286.
[85] [85] SHI X F, JIN W D, GAO H, et al. A suppository kit for metronomic photodynamic therapy: the elimination of rectal cancer in situ[J]. Journal of Photochemistry and Photobiology B: Biology, 2018, 181: 143-149.
[86] [86] LAURIE G, LESAGE J C, NACIM B, et al. Development of a new illumination procedure for photodynamic therapy of the abdominal cavity[J]. Journal of Biomedical Optics, 2012, 17(3): 038001.
[87] [87] SPRING B Q, ABUYOUSIF A O, PALANISAMI A, et al. Selective treatment and monitoring of disseminated cancer micrometastases in vivo using dual-function, activatable immunoconjugates[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(10): E933-E942.
[88] [88] NIZAMOGLU S, GATHER M C, HUMAR M, et al. Bioabsorbable polymer optical waveguides for deep-tissue photomedicine[J]. Nature Communications, 2016, 7: 10374.
[89] [89] MALLIDI S, ANBIL S, BULIN A L, et al. Beyond the barriers of light penetration: strategies, perspectives and possibilities for photodynamic therapy[J]. Theranostics, 2016, 6(13): 2458-2487.
[90] [90] DUJARDIN C, AUFFRAY E, BOURRET C E, et al. Needs, trends, and advances in inorganic scintillators[J]. IEEE Transactions on Nuclear Science, 2018, 65(8): 1977-1997.
[91] [91] HU J, TANG Y A, ELMENOUFY A H, et al. Nanocomposite-based photodynamic therapy strategies for deep tumor treatment[J]. Small, 2015, 11(44): 5860-5887.
[92] [92] FAN W, HUANG P, CHEN X. Overcoming the Achilles’ heel of photodynamic therapy[J]. Chemical Society Reviews, 2016, 45(23): 6488-6519.
[93] [93] KAMKAEW A, CHEN F, ZHAN Y, et al. Scintillating nanoparticles as energy mediators for enhanced photodynamic therapy[J]. ACS Nano, 2016, 10(4): 3918-3935.
[94] [94] LARUE L, MIHOUB A, YOUSSEF Z, et al. Using X-rays in photodynamic therapy: an overview[J]. Photochemical & Photobiological Sciences, 2018, 17(11): 1612-1650.
[95] [95] CHEN X, SONG J, CHEN X, et al. X-ray-activated nanosystems for theranostic applications[J]. Chemical Society Reviews, 2019, 48(11): 3073-3101.
[96] [96] SUN W J, ZHOU Z, PRATX G, et al. Nanoscintillator-mediated X-Ray induced photodynamic therapy for deep-seated tumors: from concept to biomedical applications[J]. Theranostics, 2020, 10(3): 1296-1318.
[97] [97] HARADA K, MURAYAMA Y, KUBO H, et al. Photodynamic diagnosis of peritoneal metastasis in human pancreatic cancer using 5-aminolevulinic acid during staging laparoscopy[J]. Oncology Letters, 2018, 16(1): 821-828.
[98] [98] KUSHIBIKI T, NOJI T, EBIHARA Y, et al. 5-Aminolevulinic-acid-mediated photodynamic diagnosis enhances the detection of peritoneal metastases in biliary tract cancer in mice[J]. In Vivo, 2017, 31(5): 905-908.
[99] [99] LEE H H, CHOI M G, HASAN T. Application of photodynamic therapy in gastrointestinal disorders: an outdated or re-emerging technique?[J]. The Korean Journal of Internal Medicine, 2017, 32(1): 1-10.
Get Citation
Copy Citation Text
SHI Xiafei, CHEN Qianqian, CHE Bochen, YIN Huijuan, LI Yingxin. Application and Research Progress of Photodynamic Therapy in the Treatment of Gastrointestinal Cancer[J]. Acta Laser Biology Sinica, 2021, 30(1): 1
Category:
Received: Aug. 16, 2020
Accepted: --
Published Online: Aug. 23, 2021
The Author Email: Huijuan YIN (yinzi490@163.com)