Laser & Optoelectronics Progress, Volume. 59, Issue 16, 1628008(2022)

Ship Classification and Detection Method for Optical Remote Sensing Images Based on Improved YOLOv5s

Qikai Zhou1, Wei Zhang1, Dongjin Li2, and Fu Niu1、*
Author Affiliations
  • 1Academy of Systems Engineering of Academy of Military Science of Chinese PLA, Beijing 100071, China
  • 2Beijing Institute of Control and Electronic Technology, Beijing 100038, China
  • show less
    Figures & Tables(10)
    EB-YOLOv5s structure
    Efficient channel attention module
    Feature pyramid network (FPN).(a) Traditional feature pyramid network; (b) path aggregation network; (c) multi-stage weighted fusion pyramid network
    Samples in dataset
    Detection effect of different methods
    • Table 1. Experimental results under different K

      View table

      Table 1. Experimental results under different K

      KmAPAP1(Aircraft_carrier)AP2(Warship)AP3(Civilian_ship)AP4(Submarine)
      185.895.095.868.384.0
      387.499.294.469.186.8
      584.494.695.166.481.4
    • Table 2. Experimental results under different number and location of modules

      View table

      Table 2. Experimental results under different number and location of modules

      Experiment No.Number of modulesmAPAP1(Aircraft_carrier)AP2(Warship)AP3(Civilian_ship)AP4(Submarine)
      1286.192.895.870.984.7
      2387.395.295.759.381.5
      34(Neck)81.890.094.264.878.0
      44(Backbone)87.499.294.469.186.8
      5587.498.295.968.886.6
    • Table 3. Performance comparison of different detection methods

      View table

      Table 3. Performance comparison of different detection methods

      MethodmAP /%t /sWeight /MB
      YOLOv384.60.2870235
      SSD89.71.62292.1
      YOLOv5s83.90.186113.7
      EB-YOLOv5s89.20.207062.7
    • Table 4. Comparison for average accuracy

      View table

      Table 4. Comparison for average accuracy

      MethodmAPAP1(Aircraft_carrier)AP2(Warship)AP3(Civilian_ship)AP4(Submarine)
      YOLOv5s83.997.394.962.880.8
      YOLOv5s+SE85.997.896.065.384.7
      YOLOv5s+ECA87.499.294.469.186.8
      YOLOv5s+BIFPN86.594.094.366.990.8
      EB-YOLOv5s89.298.995.871.690.3
    • Table 5. Comparison for detection speed and network complexity

      View table

      Table 5. Comparison for detection speed and network complexity

      Methodt /sWeight /MBLayerParameters
      YOLOv5s0.186113.72247062001
      YOLOv5s+SE0.221614.12567237281
      YOLOv5s+ECA0.199813.72407062013
      YOLOv5s+BIFPN0.199615.72368128517
      EB-YOLOv5s0.206762.72528128529
    Tools

    Get Citation

    Copy Citation Text

    Qikai Zhou, Wei Zhang, Dongjin Li, Fu Niu. Ship Classification and Detection Method for Optical Remote Sensing Images Based on Improved YOLOv5s[J]. Laser & Optoelectronics Progress, 2022, 59(16): 1628008

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Remote Sensing and Sensors

    Received: Dec. 29, 2021

    Accepted: Feb. 25, 2022

    Published Online: Aug. 8, 2022

    The Author Email: Fu Niu (niufu@vip.sina.com)

    DOI:10.3788/LOP202259.1628008

    Topics