Chinese Journal of Quantum Electronics, Volume. 42, Issue 4, 490(2025)
Electric field measurements based on Rydberg atomic single⁃body and many⁃body systems
[1] Gallagher T F, Safinya K A, Gounand F et al. Resonant Rydberg-atom: Rydbert-atom collisions[J]. Physical Review A, 25, 1905-1917(1982).
[2] Sedlacek J A, Schwettmann A, Kübler H et al. Microwave electrometry with Rydberg atoms in a vapour cell using bright atomic resonances[J]. Nature Physics, 8, 819-824(2012).
[3] Fan H Q, Kumar S, Sedlacek J et al. Atom based RF electric field sensing[J]. Journal of Physics B: Atomic, Molecular and Optical Physics, 48, 202001(2015).
[4] Holloway C L, Simons M T, Gordon J A et al. Electric field metrology for SI traceability: Systematic measurement uncertainties in electromagnetically induced transparency in atomic vapor[J]. Journal of Applied Physics, 121, 233106(2017).
[5] Ding D S, Liu Z K, Shi B S et al. Enhanced metrology at the critical point of a many-body Rydberg atomic system[J]. Nature Physics, 18, 1447-1452(2022).
[6] Zhang H, Ma Y, Liao K Y et al. Rydberg atom electric field sensing for metrology, communication and hybrid quantum systems[J]. Science Bulletin, 69, 1515-1535(2024).
[7] Cheng Y J, Jin G, Han B B et al. Research on quantum metrology for wideband microwave electric field[J]. Journal of Astronautic Metrology and Measurement, 43, 1-4, 10(2023).
[8] Du Y J, Lyu Z Y, Hu W D et al. Atomic‑antenna‑based quantum precision measurement of low‑frequency electric fields and applications[J]. Chinese Journal of Quantum Electronics, 41, 701-712(2024).
[9] Song Z, Liu H, Liu X et al. Rydberg-atom-based digital communication using a continuously tunable radio-frequency carrier[J]. Optics Express, 27, 8848-8857(2019).
[10] Anderson D A, Sapiro R E, Raithel G. An atomic receiver for AM and FM radio communication[J]. IEEE Transactions on Antennas and Propagation, 69, 2455-2462(2021).
[11] Wang J, Han M Z, Zhao S F et al. Optical PAM-4 generation via electromagnetically induced transparency in nitrogen-vacancy centers[J]. Results in Physics, 30, 104802(2021).
[12] Yang K, Sun Z S, Mao R Q et al. Wideband Rydberg atom-based receiver for amplitude modulation radio frequency communication[J]. Chinese Optics Letters, 20, 081203(2022).
[13] Song X Y, Yin Z, Ren G et al. Optical PAM-4/PAM-8 generation via dual-Raman process in Rydberg atoms[J]. Chinese Physics B, 33, 064203(2024).
[14] Cui M Y, Zeng Q S, Huang K B. Towards atomic MIMO receivers[J]. IEEE Journal on Selected Areas in Communications, 43, 659-673(2025).
[15] Cai Y F, Shi S, Zhou Y J et al. High-sensitivity Rydberg-atom-based phase-modulation receiver for frequency-division-multiplexing communication[J]. Physical Review Applied, 19, 044079(2023).
[16] Wu B, Mao R Q, Sang D et al. Enhancing sensitivity of atomic microwave receivers based on optimal laser arrays[J]. IEEE Transactions on Antennas and Propagation, 73, 793-806(2025).
[17] Yuan J P, Jin T, Yan Y et al. A Rydberg atom-based amplitude-modulated receiver using the dual-tone microwave field[J]. EPJ Quantum Technology, 11, 2(2024).
[18] Liu Z K, Zhang L H, Liu B et al. Deep learning enhanced Rydberg multifrequency microwave recognition[J]. Nature Communications, 13, 1997(2022).
[19] Tanasittikosol M, Pritchard J D, Maxwell D et al. Microwave dressing of Rydberg dark states[J]. Journal of Physics B: Atomic, Molecular and Optical Physics, 44, 184020(2011).
[20] Kumar S, Fan H, Kübler H et al. Atom-based sensing of weak radio frequency electric fields using homodyne readout[J]. Scientific Reports, 7, 42981(2017).
[21] Kumar S, Fan H Q, Kübler H et al. Rydberg-atom based radio-frequency electrometry using frequency modulation spectroscopy in room temperature vapor cells[J]. Optics Express, 25, 8625-8637(2017).
[22] Jia F D, Yu Y H, Liu X B et al. Dispersive microwave electrometry using Zeeman frequency modulation spectroscopy of electromagnetically induced transparency in Rydberg atoms[J]. Applied Optics, 59, 8253-8258(2020).
[23] Liu W X, Zhang L J, Wang T. Atom-based power-frequency electric field measurement using the radio-frequency-modulated Rydberg spectroscopy[J]. Chinese Physics B, 32, 053203(2023).
[24] Jing M Y, Hu Y, Ma J et al. Atomic superheterodyne receiver based on microwave-dressed Rydberg spectroscopy[J]. Nature Physics, 16, 911-915(2020).
[25] Wu F, An Q, Sun Z et al. Linear dynamic range of a Rydberg-atom microwave superheterodyne receiver[J]. Physical Review A, 107, 043108(2023).
[26] Wu B, Liao D W, Ding Z K et al. Local oscillator port integrated resonator for Rydberg atom-based electric field measurement enhancement[J]. EPJ Quantum Technology, 11, 22(2024).
[27] Wu F C, An Q, Yao J W et al. Research on intrinsic expansion coefficients in Rydberg atomic heterodyne receiving link[J]. Acta Physica Sinica, 72, 047401(2023).
[28] Borówka S, Pylypenko U, Mazelanik M et al. Continuous wideband microwave-to-optical converter based on room-temperature Rydberg atoms[J]. Nature Photonics, 18, 32-38(2023).
[29] Che J L, Zhang Y Q, Zhang Y F et al. Polarized Autler⁃Townes splitting of Rydberg six-wave mixing[J]. Journal of Physics B: Atomic, Molecular and Optical Physics, 49, 174002(2016).
[30] Vogt T, Gross C, Han J S et al. Efficient microwave-to-optical conversion using Rydberg atoms[J]. Physical Review A, 99, 023832(2019).
[31] Tu H T, Liao K Y, Wang H L et al. Approaching the standard quantum limit of a Rydberg-atom microwave electrometer[J]. Science Advances, 10, eads0683(2024).
[32] Bouillon A, Marin-Bujedo E, Génévriez M. Direct laser cooling of Rydberg atoms with an isolated-core transition[J]. Physical Review Letters, 132, 193402(2024).
[33] Lim J, Lee H G, Ahn J. Review of cold Rydberg atoms and their applications[J]. Journal of the Korean Physical Society, 63, 867-876(2013).
[34] Simons M T, Haddab A H, Gordon J A et al. A Rydberg atom-based mixer: Measuring the phase of a radio frequency wave[J]. Applied Physics Letters, 114, 114101(2019).
[35] Urban E, Johnson T A, Henage T et al. Observation of Rydberg blockade between two atoms[J]. Nature Physics, 5, 110-114(2009).
[36] Gaëtan A, Miroshnychenko Y, Wilk T et al. Observation of collective excitation of two individual atoms in the Rydberg blockade regime[J]. Nature Physics, 5, 115-118(2009).
[37] Dudin Y O, Li L, Bariani F et al. Observation of coherent many-body Rabi oscillations[J]. Nature Physics, 8, 790-794(2012).
[38] Schauß P, Cheneau M, Endres M et al. Observation of spatially ordered structures in a two-dimensional Rydberg gas[J]. Nature, 491, 87-91(2012).
[39] Ding D S, Busche H, Shi B S et al. Phase diagram and self-organizing dynamics in a thermal ensemble of strongly interacting Rydberg atoms[J]. Physical Review X, 10, 021023(2020).
[40] Wang Q X, Wang Z H, Liu Y X et al. Cavity-enhanced optical bistability of Rydberg atoms[J]. Optics Letters, 48, 2865-2868(2023).
[41] Wu K D, Xie C W, Li C F et al. Nonlinearity-enhanced continuous microwave detection based on stochastic resonance[J]. Science Advances, 10, eado8130(2024).
[42] Prajapati N, Robinson A K, Berweger S et al. Enhancement of electromagnetically induced transparency based Rydberg-atom electrometry through population repumping[J]. Applied Physics Letters, 119, 214001(2021).
[43] Jia F D, Zhang H Y, Liu X B et al. Transfer phase of microwave to beat amplitude in a Rydberg atom-based mixer by Zeeman modulation[J]. Journal of Physics B: Atomic, Molecular and Optical Physics, 54, 165501(2021).
[44] Anderson D A, Sapiro R E, Gonçalves L F et al. Optical radio-frequency phase measurement with an internal-state Rydberg atom interferometer[J]. Physical Review Applied, 17, 044020(2022).
[45] Liu X B, Jia F D, Zhang H Y et al. An all-optical phase detector by amplitude modulation of the local field in a Rydberg atom-based mixer[J]. Chinese Physics B, 31, 090703(2022).
[46] Shi Y S, Ouyang K, Ren W et al. Near-field antenna measurement based on Rydberg-atom probe[J]. Optics Express, 31, 18931-18938(2023).
[47] Gammelmark S, Mølmer K. Phase transitions and Heisenberg limited metrology in an Ising chain interacting with a single-mode cavity field[J]. New Journal of Physics, 13, 053035(2011).
[48] Macieszczak K, Guţă M, Lesanovsky I et al. Dynamical phase transitions as a resource for quantum enhanced metrology[J]. Physical Review A, 93, 022103(2016).
[49] Fernández-Lorenzo S, Porras D. Quantum sensing close to a dissipative phase transition: Symmetry breaking and criticality as metrological resources[J]. Physical Review A, 96, 013817(2017).
[50] Raghunandan M, Wrachtrup J, Weimer H. High-density quantum sensing with dissipative first order transitions[J]. Physical Review Letters, 120, 150501(2018).
[51] Garbe L, Bina M, Keller A et al. Critical quantum metrology with a finite-component quantum phase transition[J]. Physical Review Letters, 124, 120504(2020).
[52] Chu Y M, Zhang S L, Yu B Y et al. Dynamic framework for criticality-enhanced quantum sensing[J]. Physical Review Letters, 126, 010502(2021).
[53] Montenegro V, Mishra U, Bayat A. Global sensing and its impact for quantum many-body probes with criticality[J]. Physical Review Letters, 126, 200501(2021).
[54] Pezzè L, Smerzi A, Oberthaler M K et al. Quantum metrology with nonclassical states of atomic ensembles[J]. Reviews of Modern Physics, 90, 035005(2018).
[56] Yu Y C, Dong M X, Ye Y H et al. Experimental demonstration of switching entangled photons based on the Rydberg blockade effect[J]. Science China Physics, Mechanics & Astronomy, 63, 110312(2020).
[57] He Z R, Fu Z X, Liang J H et al. Distant two-qubit gates in atomic array with Rydberg interaction using geometric quantum control[J]. Quantum Frontiers, 3, 25(2024).
[58] Labuhn H, Barredo D, Ravets S et al. Tunable two-dimensional arrays of single Rydberg atoms for realizing quantum Ising models[J]. Nature, 534, 667-670(2016).
[59] Distante E, Padrón-Brito A, Cristiani M et al. Storage enhanced nonlinearities in a cold atomic Rydberg ensemble[J]. Physical Review Letters, 117, 113001(2016).
Get Citation
Copy Citation Text
Xiaoyun SONG, Xuehua CHEN, Chunyang JIA, Nan CONG, Renfu YANG. Electric field measurements based on Rydberg atomic single⁃body and many⁃body systems[J]. Chinese Journal of Quantum Electronics, 2025, 42(4): 490
Category: Special Issue on...
Received: Dec. 30, 2024
Accepted: --
Published Online: Jul. 31, 2025
The Author Email: Renfu YANG (yangrf@baqis.ac.cn)