Chinese Journal of Lasers, Volume. 48, Issue 15, 1501004(2021)
Tandem-Pumped High-Power Ytterbium-Doped Fiber Lasers: Progress and Opportunities
[1] Jauregui C, Limpert J, Tünnermann A. High-power fibre lasers[J]. Nature Photonics, 7, 861-867(2013).
[2] Xin J J, Fang C, Huang C J et al. Analysis of the fracture mechanism at cryogenic temperatures of thick 316LN laser welded joints[J]. Fusion Engineering and Design, 148, 111277(2019).
[3] Gao C, Dai J Y, Li F Y et al. Homemade 10-kW ytterbium-doped aluminophosphosilicate fiber for tandem pumping[J]. Chinese Journal of Lasers, 47, 0315001(2020).
[4] Dai J Y, Li F Y, Liu N et al. 10 kw-level Yb-doped aluminophosphosilicate fiber[C]. //Conference on Lasers and Electro-Optics/Pacific Rim 2020, August 3-5, 2020, Sydney, Australia, C9A_1(2020).
[5] Fang Q, Li J H, Shi W et al. 5 kW near-diffraction-limited and 8 kW high-brightness monolithic continuous wave fiber lasers directly pumped by laser diodes[J]. IEEE Photonics Journal, 9, 1-7(2017).
[6] Xiao Q R, Li D, Huang Y S et al. Directly diode and bi-directional pumping 6 kW continuous-wave all-fibre laser[J]. Laser Physics, 28, 125107(2018).
[7] Yan P, Huang Y S, Sun J Y et al. 3.1 kW monolithic MOPA configuration fibre laser bidirectionally pumped by non-wavelength-stabilized laser diodes[J]. Laser Physics Letters, 14, 080001(2017).
[9] Chen X L, Lou F G, He Y et al. Home-made 10 kW fiber laser with high efficiency[J]. Acta Optica Sinica, 39, 0336001(2019).
[10] Lin H H, Tang X, Li C Y et al. A homemade fiber laser system with 10.6 kW output power[J]. Chinese Journal of Lasers, 45, 0315001(2018).
[11] Lin A X, Zhan H, Peng K et al. 10 kW-level pump-gain integrated functional laser fiber[J]. High Power Laser and Particle Beams, 30, 060101(2018).
[12] Xi X M, Yang H, Zeng L F et al. 5 kW all-fiber amplifier based on homemade spindle-shaped Yb-doped fiber[J]. High Power Laser and Particle Beams, 33, 021001(2021).
[13] Ackermann M, Rehmann G, Lange R et al. Extraction of more than 10 kW from a single ytterbium-doped MM-fiber[J]. Proceedings of SPIE, 10897, 1089717(2019).
[14] Wang Y, Kitahara R, Kiyoyama W et al. 8 kW single-stage all-fiber Yb-doped fiber laser with a BPP of 0.50 mm-mrad[J]. Proceedings of SPIE, 11260, 1126022(2020).
[15] Klein S, Giesberts M, Baer P et al. Fiber Bragg gratings in active multimode XLMA fibers for high-power kW-class fiber lasers[J]. Proceedings of SPIE, 11260, 1126025(2020).
[16] Platonov N, Shkurikhin O, Fomin V et al. High efficient kW level single-mode ytterbium fiber lasers in all-fiber format with diffraction-limited beam at wavelengths in 1000-1030 nm spectral range[J]. Proceedings of SPIE, 11260, 1126003(2020).
[17] Chu Q, Shu Q, Liu Y et al. 3 kW high OSNR 1030 nm single-mode monolithic fiber amplifier with a 180 pm linewidth[J]. Optics Letters, 45, 6502-6505(2020).
[19] Xu Y, Fang Q, Cui X et al. 1 kW monolithic narrow linewidth linear-polarized fiber laser at 1030 nm[J]. Proceedings of SPIE, 10512, 105122S(2018).
[20] Chu Q H, Shu Q, Lin H H et al. All-fiber narrow linewidth fiber laser achieved 3 kW near diffraction limited output at 1030 nm[J]. High Power Laser and Particle Beams, 32, 011005(2020).
[21] Platonov N, Yagodkin R, De La Cruz J et al. 1.5 kW linear polarized on PM fiber and 2 kW on non-PM fiber narrow linewidth CW diffraction-limited fiber amplifier[J]. Proceedings of SPIE, 10085, 10085M(2017).
[22] Richardson D J, Nilsson J, Clarkson W A. High power fiber lasers: current status and future perspectives[J]. Journal of the Optical Society of America B, 27, B63-B92(2010).
[23] Gapontsev V, Fomin V, Yusim A. Recent progress in scaling of high power fiber lasers at IPG photonics[C]. //Solid State Diode Laser Technology Review, June 29, 2009, Newton, MA, USA. [S. l. : s. n.](2009).
[24] Wang J H, Chen G, Zhang L et al. High-efficiency fiber laser at 1018 nm using Yb-doped phosphosilicate fiber[J]. Applied Optics, 51, 7130-7133(2012).
[27] Xiao H, Zhou P, Wang X L et al. High power 1018 nm ytterbium doped fiber laser with an output power of 309 W[J]. Laser Physics Letters, 10, 065102(2013).
[28] Xiao H, Leng J Y, Zhang H W et al. High-power 1018 nm ytterbium-doped fiber laser and its application in tandem pump[J]. Applied Optics, 54, 8166-8169(2015).
[29] Jiang M, Zhou P, Xiao H et al. A high-power narrow-linewidth 1018 nm fiber laser based on a single-mode-few-mode-single-mode structure[J]. High Power Laser Science and Engineering, 3, e25(2015).
[30] Wang Y S, Sun Y H, Ma Y et al. Experimental study on high brightness 1018 nm ytterbium doped fiber laser[J]. Chinese Journal of Lasers, 42, 0102007(2015).
[31] Wang Y B, Chen G, Xie L et al. Experimental research of high performance fiber and fiber laser at 1018 nm[J]. Acta Physica Sinica, 62, 064210(2013).
[32] Zhang R, Xue Y, Zhang H et al. High power continuous wave ytterbium-doped fiber oscillator at 1018 nm[J]. Proceedings of SPIE, 9266, 92661E(2014).
[33] Ottenhues C, Theeg T, Hausmann K et al. Single-mode monolithic fiber laser with 200 W output power at a wavelength of 1018 nm[J]. Optics Letters, 40, 4851-4854(2015).
[34] Seah C P, Ng T Y, Chua S L. 400 W ytterbium-doped fiber oscillator at 1018 nm[C]. //Advanced Solid State Lasers 2015, October 4-9, 2015, Berlin, Germany, ATu2A, 33(2015).
[35] Glick Y, Sintov Y, Zuitlin R et al. Single-mode 230 W output power 1018 nm fiber laser and ASE competition suppression[J]. Journal of the Optical Society of America B, 33, 1392-1398(2016).
[36] Yan P, Wang X J, Li D et al. High-power 1018 nm ytterbium-doped fiber laser with output of 805 W[J]. Optics Letters, 42, 1193-1196(2017).
[37] Chen X L, Wang J H, Zhao X et al. 307 W high-power 1018 nm monolithic tandem pump fiber source with effective thermal management[J]. Chinese Optics Letters, 15, 071407(2017).
[38] Yan P, Wang X J, Wang Z H et al. A 1150 W 1018 nm fiber laser bidirectional pumped by wavelength-stabilized laser diodes[J]. IEEE Journal of Selected Topics in Quantum Electronics, 24, 1-6(2018).
[39] Lafouti M, Latifi H, Fathi H et al. Experimental investigation of a high-power 1018 nm fiber laser using a 20/400 μm ytterbium-doped fiber[J]. Applied Optics, 58, 729-733(2019).
[40] Palma-Vega G, Walbaum T, Heinzig M et al. Ring-up-doped fiber for the generation of more than 600 W single-mode narrow-band output at 1018 nm[J]. Optics Letters, 44, 2502-2505(2019).
[41] Lim W Y W, Seah C P, Chua S L. Thermally insensitive 700 W Yb-doped fiber oscillator at 1018 nm[C]. //2017 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC), June 25-29, 2017, Munich.(2017).
[42] Li R X, Xiao H, Leng J Y et al. 2240 W high-brightness 1018 nm fiber laser for tandem pump application[J]. Laser Physics Letters, 14, 125102(2017).
[43] Gu Y R, Leng J Y, Xiao H et al. 5 kw all-fiber 1018 nm laser combining[J]. High Power Laser and Particle Beams, 29, 120101(2017).
[44] Kong F T, Gu G C, Hawkins T W et al. Efficient 240 W single-mode 1018 nm laser from an ytterbium-doped 50/400 μm all-solid photonic bandgap fiber[J]. Optics Express, 26, 3138-3144(2018).
[45] Lafouti M, Latifi H, Sarabi H et al. 407 W specially-designed fiber laser at 1018 nm using a gain fiber with a low core/cladding ratio of 20/400 μm[J]. Laser Physics, 28, 115102(2018).
[46] Tian J D, Xiao Q R, Li D et al. Hybrid-structure 1018-nm monolithic single-mode fiber laser producing high power and high efficiency[J]. OSA Continuum, 2, 1138-1147(2019).
[47] Kalyoncu S K, Yeniay A. High brightness 1018 nm monolithic fiber laser with power scaling to >500 W[J]. Applied Optics, 59, 4763-4767(2020).
[48] Tian J D, Xiao Q R, Li D et al. Suppressing the amplified spontaneous emission in the high-power 1018-nm monolithic fiber laser by decreasing the feedback from the inner reflections[J]. Journal of the Optical Society of America B, 37, 2514-2522(2020).
[49] Xie Z X, Fang Q, Xu Y et al. Hundred-Watts-level monolithic narrow linewidth linearly-polarized fiber laser at 1018 nm[J]. Optical Engineering, 58, 106106(2019).
[50] Xiao Q R, Tian J D, Yan P et al. Exploring the initiation of fiber fuse[J]. Scientific Reports, 9, 1-10(2019).
[51] Matniyaz T, Kong F T, Kalichevsky-Dong M T et al. 302 W single-mode power from an Er/Yb fiber MOPA: publisher’s note[J]. Optics Letters, 45, 2910-2913(2020).
[52] Wirth C, Schmidt O, Kliner A et al. High-power tandem pumped fiber amplifier with an output power of 2.9 kW[J]. Optics Letters, 36, 3061-3063(2011).
[53] Beier F, Strecker M, Nold J et al. 6.8 kW peak Power quasi-continuous wave tandem-pumped ytterbium amplifier at 1071 nm[J]. Proceedings of SPIE, 9344, 93441H(2015).
[54] Lim K J, Kai-Wen S S, Yong’En Y J et al. High absorption large-mode area step-index fiber for tandem-pumped high-brightness high-power lasers[J]. Photonics Research, 8, 1599-1604(2020).
[55] Zhou P, Xiao H, Leng J Y et al. High-power fiber lasers based on tandem pumping[J]. Journal of the Optical Society of America B, 34, A29-A36(2017).
[56] Wang X J, Yan P, Wang Z H et al. The 5.4 kW output power of the ytterbium-doped tandem pumping[C]. //Conference on Lasers and Electro-Optics 2018, May 13-18, 2018, San Jose, California, AM2M, 5(2018).
[57] Wang Z H, Xiao Q R, Wang X J et al. 3000 W tandem pumped all-fiber laser based on domestic fiber[J]. Acta Physica Sinica, 67, 024205(2018).
[58] Wang Z H, Yan P, Xiao Q R et al. Experimental research on high power tandem pumped fiber laser with homemade gain fiber[J]. Proceedings of SPIE, 11455, 114556V(2020).
[59] Wang M, Wang Z F, Liu L et al. Effective suppression of stimulated Raman scattering in half 10 kW tandem pumping fiber lasers using chirped and tilted fiber Bragg gratings[J]. Photonics Research, 7, 167-171(2019).
[60] Zeng L F, Pan Z Y, Xi X M et al. 5 kW monolithic fiber amplifier employing homemade spindle-shaped ytterbium-doped fiber[J]. Optics Letters, 46, 1393-1396(2021).
[61] Liu Y, Su R, Ma P et al. >1 kW all-fiberized narrow-linewidth polarization-maintained fiber amplifiers with wavelength spanning from 1065 to 1090 nm[J]. Applied Optics, 56, 4213-4218(2017).
[62] Tian J D, Xiao Q R, Li D et al. Tandem-pumped high-power narrow-linewidth fiber laser tunable from 1060-1090 nm[J]. Journal of Lightwave Technology, 38, 1461-1467(2020).
[63] Wang Y S, Peng W J, Ke W W et al. Influence of seed instability on the stimulated Raman scattering of high power narrow linewidth fiber amplifier[J]. Optical and Quantum Electronics, 52, 1-12(2020).
[64] Turitsyn S K, Babin S A, El-Taher A E et al. Random distributed feedback fibre laser[J]. Nature Photonics, 4, 231-235(2010).
[65] Ma R, Rao Y J, Zhang W L et al. Multimode random fiber laser for speckle-free imaging[J]. IEEE Journal of Selected Topics in Quantum Electronics, 25, 1-6(2019).
[66] Yang T H, Chen C W, Jau H C et al. Liquid-crystal random fiber laser for speckle-free imaging[J]. Applied Physics Letters, 114, 191105(2019).
[67] Chen L J, Song R, Lei C M et al. Random fiber laser directly generates visible to near-infrared supercontinuum[J]. Optics Express, 27, 29781-29788(2019).
[68] Ma X Y, Ye J, Zhang Y et al. Vortex random fiber laser with controllable orbital angular momentum mode[J]. Photonics Research, 9, 266-271(2021).
[69] Wang J H, Chen R S, Yao J N et al. Random distributed feedback fiber laser generating cylindrical vector beams[J]. Physical Review Applied, 11, 044051(2019).
[70] Wu H, Han B, Wang Z N et al. Temporal ghost imaging with random fiber lasers[J]. Optics Express, 28, 9957-9964(2020).
[71] Zhang H W, Huang L, Song J X et al. Quasi-kilowatt random fiber laser[J]. Optics Letters, 44, 2613-2615(2019).
[72] Li Y, Li T L, Peng W J et al. Narrow spectrum kilowatt-level MOPA seeded by Yb-doped random fiber laser[J]. IEEE Photonics Technology Letters, 29, 1844-1847(2017).
[73] Li T L, Li Y, Ke W W et al. Power scaling of narrow-linewidth fiber amplifier seeded by Yb-doped random fiber laser[J]. IEEE Journal of Selected Topics in Quantum Electronics, 24, 1-8(2018).
[74] Xu J M, Huang L, Jiang M et al. Near-diffraction-limited linearly polarized narrow-linewidth random fiber laser with record kilowatt output[J]. Photonics Research, 5, 350-354(2017).
[75] Xu J M, Ye J, Zhou P et al. Tandem pumping architecture enabled high power random fiber laser with near-diffraction-limited beam quality[J]. Science China Technological Sciences, 62, 80-86(2019).
[76] Wang Z H, Yan P, Huang Y S et al. An efficient 4-kW level random fiber laser based on a tandem-pumping scheme[J]. IEEE Photonics Technology Letters, 31, 817-820(2019).
[77] Wang Z H, Yu W L, Tian J D et al. 5.1 kW tandem-pumped fiber amplifier seeded by random fiber laser with high suppression of stimulated Raman scattering[J]. IEEE Journal of Quantum Electronics, 57, 1-9(2021).
[78] Feng Y, Zhang L, Jiang H. Power scaling of Raman fiber lasers[J]. Proceedings of SPIE, 9344, 93440U(2015).
[79] Taylor L R, Feng Y, Calia D B. 50 W CW visible laser source at 589 nm obtained via frequency doubling of three coherently combined narrow-band Raman fibre amplifiers[J]. Optics Express, 18, 8540-8555(2010).
[81] Ji J H, Codemard C A, Ibsen M et al. Analysis of the conversion to the first stokes in cladding-pumped fiber Raman amplifiers[J]. IEEE Journal of Selected Topics in Quantum Electronics, 15, 129-139(2009).
[82] Chen Y Z, Yao T F, Xiao H et al. High-power cladding pumped Raman fiber amplifier with a record beam quality[J]. Optics Letters, 45, 2367-2370(2020).
[86] Zhang H W, Tao R M, Zhou P et al. 1.5-kW Yb-Raman combined nonlinear fiber amplifier at 1120 nm[J]. IEEE Photonics Technology Letters, 27, 628-630(2015).
[87] Xiao Q, Yan P, Li D et al. Bidirectional pumped high power Raman fiber laser[J]. Optics Express, 24, 6758-6768(2016).
[88] Wang Z H, Xiao Q R, Huang Y S et al. Dual-wavelength bidirectional pumped high-power Raman fiber laser[J]. High Power Laser Science and Engineering, 7, e5(2019).
[89] Zhang H W, Xiao H, Wang X L et al. Mode dynamics in high-power Yb-Raman fiber amplifier[J]. Optics Letters, 45, 3394-3397(2020).
[90] Chen Y Z, Yao T F, Xiao H et al. 3 kW passive-gain-enabled metalized Raman fiber amplifier with brightness enhancement[J]. Journal of Lightwave Technology, 39, 1785-1790(2021).
Get Citation
Copy Citation Text
Qirong Xiao, Jiading Tian, Dan Li, Tiancheng Qi, Zehui Wang, Weilong Yu, Yulun Wu, Ping Yan, Mali Gong. Tandem-Pumped High-Power Ytterbium-Doped Fiber Lasers: Progress and Opportunities[J]. Chinese Journal of Lasers, 2021, 48(15): 1501004
Category: laser devices and laser physics
Received: Mar. 22, 2021
Accepted: Apr. 15, 2021
Published Online: Aug. 5, 2021
The Author Email: Ping Yan (pyan2021@163.com)