Chinese Journal of Liquid Crystals and Displays, Volume. 37, Issue 2, 217(2022)
Photoinduced deformation of azobenzene liquid crystal actuator
[1] [1] IONOV L. Biomimetic hydrogel-based actuating systems [J].Adv. Funct. Mater., 2013, 23(36): 4555-4570.
[2] [2] SHANG Y Y, WANG J X, IKEDA T, et al. Bio-inspired liquid crystal actuator materials [J]. J. Mater. Chem. C, 2019, 7(12): 3413-3428.
[3] [3] PALAGI S, MARK A G, REIGH S Y, et al. Structured light enables biomimetic swimming and versatile locomotion of photoresponsive soft microrobots [J]. Nat. Mater., 2016, 15(6): 647-653.
[4] [4] HU W Q, LUM G Z, MASTRANGELI M, et al. Small-scale soft-bodied robot with multimodal locomotion [J]. Nature, 2018, 554(7690): 81-85.
[7] [7] YU Q, YANG X J, CHEN Y, et al. Fabrication of light-triggered soft artificial muscles via a mixed-matrix membrane strategy [J]. Angew. Chem. Int. Ed., 2018, 57(32): 10192-10196.
[8] [8] LU X L, GUO S W, TONG X, et al. Tunable photocontrolled motions using stored strain energy in malleable azobenzene liquid crystalline polymer actuators [J]. Adv. Mater., 2017, 29(28): 1606467.
[9] [9] LU X L, ZHANG H, FEI G X, et al. Liquid-crystalline dynamic networks doped with gold nanorods showing enhanced photocontrol of actuation [J]. Adv. Mater., 2018, 30(14): 1706597.
[10] [10] YANG X, CHENG M J, ZHANG L N, et al. Electricity generation through light-responsive diving-surfacing locomotion of a functionally cooperating smart device [J]. Adv. Mater., 2018, 30(36): 1803125.
[11] [11] MA M M, GUO L, ANDERSON D G, et al. Bio-inspired polymer composite actuator and generator driven by water gradients [J]. Science, 2013, 339(6116): 186-189.
[12] [12] IKEDA T, SASAKI T,ICHIMURA K. Photochemical switching of polarization in ferroelectric liquid-crystal films [J]. Nature, 1993, 361(6411): 428-430.
[13] [13] YU Y L, NAKANO M, IKEDA T. Directed bending of a polymer film by light [J]. Nature, 2003, 425(6954): 145.
[14] [14] CAO J, ZHOU C L, SU G H, et al. Arbitrarily 3D configurable hygroscopic robots with a covalent-noncovalent interpenetrating network and self-healing ability [J]. Adv. Mater., 2019, 31(18): 1900042.
[15] [15] ZHANG D J, LIU J, CHEN B, et al. A hydrophilic/hydrophobic Janus inverse-opal actuator via gradient infiltration [J]. ACS Nano, 2018, 12(12): 12149-12158.
[16] [16] GUO W W, LU C H, ORBACH R, et al. pH-stimulated DNA hydrogels exhibiting shape-memory properties [J]. Adv. Mater., 2015, 27(1): 73-78.
[17] [17] GOUJON A, LANG T, MARIANI G, et al. Bistable [c2]daisy chain rotaxanes as reversible muscle-like actuators in mechanically active gels [J]. J. Am. Chem. Soc., 2017, 139(42): 14825-14828.
[18] [18] GUPTA P, KAROTHU D P, AHMED E, et al. Thermally twistable, photobendable, elastically deformable, and self-healable soft crystals [J]. Angew. Chem. Int. Ed., 2018, 57: 8498-8502.
[19] [19] GE F J, LU X L, XIANG J, et al. An optical actuator based on gold-nanoparticle-containing temperature-memory semicrystalline polymers [J]. Angew. Chem. Int. Ed., 2017, 56(22): 6126-6130.
[20] [20] LU C, YANG Y, WANG J, et al. High-performance graphdiyne-based electrochemical actuators [J]. Nat. Commun., 2018, 9(1): 752.
[21] [21] WU G, WU X J, XU Y J, et al. High-performance hierarchical black-phosphorous-based soft electrochemical actuators in bioinspired applications [J]. Adv. Mater., 2019, 31(25): 1806492.
[22] [22] MU J K, WANG G, YAN H P, et al. Molecular-channel driven actuator with considerations for multiple configurations and color switching [J]. Nat. Commun., 2018, 9(1): 590.
[23] [23] YANG R, ZHAO Y. Non-uniform optical inscription of actuation domains in a liquid crystal polymer of uniaxial orientation: an approach to complex and programmable shape changes [J].Angew. Chem. Int. Ed., 2017, 56(45): 14202-14206.
[24] [24] WANI O M, VERPAALEN R, ZENG H, et al. An artificial nocturnal flower via humidity-gated photoactuation in liquid crystal networks [J]. Adv. Mater., 2019, 31(2): 1805985.
[25] [25] ZUO B, WANG M, LIN B P, et al. Visible and infrared three-wavelength modulated multi-directional actuators [J]. Nat. Commun., 2019, 10(1): 4539.
[26] [26] OKAWA D, PASTINE S J, ZETTL A, et al. Surface tension mediated conversion of light to work [J]. J. Am. Chem. Soc., 2009, 131(15): 5396-5398.
[27] [27] WU Z G, SI T Y, GAO W, et al. Superfast near-infrared light-driven polymer multilayer rockets [J]. Small, 2016, 12(5): 577-582.
[28] [28] SHI Y P, SALTER P S, LI M, et al. Two-photon laser-written photoalignment layers for patterning liquid crystalline conjugated polymer orientation [J]. Adv. Funct. Mater., 2021, 31(7): 2007493.
[29] [29] YANG Y, PEI Z Q, LI Z, et al. Making and remaking dynamic 3D structures by shining light on flat liquid crystalline vitrimer films without a mold [J]. J. Am. Chem. Soc., 2016, 138(7): 2118-2121.
[30] [30] UBE T, IKEDA T. Photomobile polymer materials with crosslinked liquid-crystalline structures: molecular design, fabrication, and functions [J].Angew. Chem. Int. Ed., 2014, 53(39): 10290-10299.
[31] [31] KIM S, SHIOZAWA T, OGATA T, et al. Photo-response properties of inverse opal infiltrated with push-pull type azobenzene functionalized polymer liquid crystals [J]. Mol. Cryst. Liq. Cryst., 2009, 498(1): 40-48.
[32] [32] PANG X L, LV J A, ZHU C Y, et al. Photodeformable azobenzene-containing liquid crystal polymers and soft Actuators [J]. Adv. Mater., 2019, 31(52): 1904224.
[33] [33] UBE T, MINAGAWA K, IKEDA T. Interpenetrating polymer networks of liquid-crystalline azobenzene polymers and poly(dimethylsiloxane) as photomobile materials [J].Soft Matter, 2017, 13(35): 5820-5823.
[34] [34] YU Y L, MAEDA T, MAMIYA J I, et al. Photomechanical effects of ferroelectric liquid-crystalline elastomers containing azobenzene chromophores [J]. Angew. Chem., 2007, 119(6): 899-901.
[35] [35] KPFER J, FINKELMANN H. Nematic liquid single crystal elastomers [J]. Makromol. Chem. Rapid Commun., 1991, 12(12): 717-726.
[36] [36] FINKELMANN H, NISHIKAWA E, PEREIRA G G, et al. A new opto-mechanical effect in solids [J]. Phys. Rev. Lett., 2001, 87(1): 015501.
[37] [37] BROER D J, FINKELMANN H, KONDO K. In-situ photopolymerization of an oriented liquid-crystalline acrylate [J]. Makromol. Chem., 1988, 189(1): 185-194.
[38] [38] IKEDA T, NAKANO M, YU Y, et al. Anisotropic bending and unbending behavior of azobenzene liquid-crystalline gels by light exposure [J]. Adv. Mater., 2003, 15(3): 201-205.
[39] [39] MAMIYA J I, YOSHITAKE A, KONDO M, et al. Is chemical crosslinking necessary for the photoinduced bending of polymer films? [J]. J. Mater. Chem., 2008, 18(1): 63-65.
[40] [40] WANG J C, HUANG S, ZHANG Y H, et al. Hydrogen bond enhances photomechanical swing of liquid-crystalline polymer bilayer films [J]. ACS Appl. Mater. Interfaces, 2021, 13(5): 6585-6596.
[41] [41] LIU Y Y, WU W, WEI J, et al. Visible light responsive liquid crystal polymers containing reactive moieties with good processability [J]. ACS Appl. Mater. Interfaces, 2017, 9(1): 782-789.
[42] [42] LV J A, LIU Y Y, WEI J, et al. Photocontrol of fluid slugs in liquid crystal polymer microactuators [J]. Nature, 2016, 537(7619): 179-184.
[43] [43] UBE T, KAWASAKI K, IKEDA T. Photomobile liquid-crystalline elastomers with rearrangeable networks [J].Adv. Mater., 2016, 28(37): 8212-8217.
[44] [44] SERAK S, TABIRYAN N, VERGARA R, et al. Liquid crystalline polymer cantilever oscillators fueled by light [J]. Soft Matter, 2010, 6(4): 779-783.
[45] [45] WANG J C, SONG T F, ZHANG Y H, et al. Light-driven autonomous self-oscillation of a liquid-crystalline polymer bimorph actuator [J]. J. Mater. Chem. C, 2021, 9(37): 12573-12580.
[46] [46] YAMADA M, KONDO M, MAMIYA J I, et al. Photomobile polymer materials: towards light-driven plastic motors [J]. Angew. Chem. Int. Ed., 2008, 47(27): 4986-4988.
[47] [47] MA S D, LI X, HUANG S, et al. A light-activated polymer composite enables on-demand photocontrolled motion: transportation at the liquid/air interface [J]. Angew. Chem. Int. Ed., 2019, 58(9): 2655-2659.
[48] [48] DA CUNHAM P, AMBERGEN S, DEBIJE M G, et al. A soft transporter robot fueled by light [J]. Adv. Sci., 2020, 7(5): 1902842.
[49] [49] GAO J J, TIAN M, HE Y R, et al. Multidimensional-encryption in emissive liquid crystal elastomers through synergistic usage of photorewritable fluorescent patterning and reconfigurable 3D shaping [J]. Adv. Funct. Mater., 2021, 2107145.
[50] [50] DONOVAN B R, MATAVULJ V M, AHN S K, et al. All-optical control of shape [J]. Adv. Mater., 2019, 31(2): 1805750.
[51] [51] GELEBART A H, JAN MULDER D, VARGA M, et al. Making waves in a photoactive polymer film [J]. Nature, 2017, 546(7660): 632-636.
[52] [52] JIANG Z, XU M, LI F Y, et al. Red-light-controllable liquid-crystal soft actuators via low-power excited upconversion based on triplet-triplet annihilation [J]. J. Am. Chem. Soc., 2013, 135(44): 16446-16453.
[53] [53] LIU Y Y, XU B, SUN S T, et al. Humidity- and photo-induced mechanical actuation of cross-linked liquid crystal polymers [J]. Adv. Mater., 2017, 29(9): 1604792.
[54] [54] LAHIKAINEN M, ZENG H, PRIIMAGI A. Reconfigurable photoactuator through synergistic use of photochemical and photothermal effects [J].Nat. Commun., 2018, 9(1): 4148.
[55] [55] PANG X L, QIN L, XU B, et al. Ultralarge contraction directed by light-driven unlocking of prestored strain energy in linear liquid crystal polymer fibers [J]. Adv. Funct. Mater., 2020, 30(32): 2002451.
[56] [56] WU P P, WANG J X, JIANG L. Bio-inspired photonic crystal patterns [J]. Mater. Horiz., 2020, 7(2): 338-365.
[57] [57] LIU J C, WANG Y, WANG J X, et al. Inkless rewritable photonic crystals paper enabled by a light-driven azobenzene mesogen switch [J]. ACS Appl. Mater. Interfaces, 2021, 13(10): 12383-12392.
[58] [58] LIU J C, WANG J X, IKEDA T, et al. Liquid-phase super photoactuator through the synergetic effects of a Janus structure and solvent/thermal/photo responses [J]. Adv. Funct. Mater., 2021, 31(48): 2105728.
[59] [59] HONG J C, PARK J H, CHUN C, et al. Photoinduced tuning of optical stop bands in azopolymer based inverse opal photonic crystals [J]. Adv. Funct. Mater., 2007, 17(14): 2462-2469.
[60] [60] KIM S, ISHII S, YAGI R, et al. Photo-induced orientation behaviors of azobenzene liquid crystal copolymers for photonic crystals [J]. RSC Adv., 2017, 7(82): 51978-51985.
[61] [61] SEKKAT Z, MORICHRE D, DUMONT M, et al. Photoisomerization of azobenzene derivatives in polymeric thin films [J]. J. Appl. Phys., 1992, 71(3): 1543-1545.
[62] [62] ZHAO J Q, LIU Y Y, YU Y L. Dual-responsive inverse opal films based on a crosslinked liquid crystal polymer containing azobenzene [J]. J. Mater. Chem. C, 2014, 2(48): 10262-10267.
[63] [63] YANG B W, CAI F, HUANG S, et al. Athermal and soft multi-nanopatterning of azopolymers: phototunable mechanical properties [J]. Angew. Chem. Int. Ed., 2020, 59(10): 4035-4042.
[64] [64] QIN L, GU W, WEIJ, et al. Piecewise phototuning of self-organized helical superstructures [J]. Adv. Mater., 2018, 30(8): 1704941.
[65] [65] LIU J, SHANG Y, LIU J, et al. A Janus photochemical/photothermal azobenzene inverse opal actuator with shape self-recovery towards sophisticated motion [J]. ACS Appl. Mater. Interfaces, 2021.
Get Citation
Copy Citation Text
LIU Jun-chao, WANG Jing-xia, JIANG Lei. Photoinduced deformation of azobenzene liquid crystal actuator[J]. Chinese Journal of Liquid Crystals and Displays, 2022, 37(2): 217
Category:
Received: Nov. 30, 2021
Accepted: --
Published Online: Mar. 1, 2022
The Author Email: LIU Jun-chao (liujunchao17@mails.ucas.edu.cn)