Optical Technique, Volume. 47, Issue 2, 223(2021)
Optical watermarking reconstruction method based on FC-DenseNets-BC neural network
[1] [1] Refregier P, Javidi B. Optical image encryption based on input plane and Fourier plane random encoding[J]. Optics Letters,1995,20(7):767—769.
[2] [2] Situ Guohai, Zhang Jingjuan. Double random-phase encoding in the Fresnel domain[J]. Optics Letters,2004,29(14):1584—1586.
[3] [3] Matoba O, Javidi B. Secure holographic memory by double-random polarization encryption[J]. Applied Optics,2004,43(14):2915—2919.
[4] [4] Kishk S, Javidi B. Information hiding technique with double phase encoding[J]. Applied Optics,2002,41(26):5462—5470.
[5] [5] Nishchal N K. Optical image watermarking using fractional Fourier transform[J]. Journal of Optics,2009,38(1):22—28.
[7] [7] Takai N, Mifune Y. Digital watermarking by a holographic technique[J]. Applied Optics,2002,41(5):865—873.
[8] [8] Li Jiaosheng, Zhong Liyun, Zhang Qinnan, et al. Optical image hiding based on dual-channel simultaneous phase-shifting interferometry and compressive sensing[J]. Applied Physics B,2017,123(1).
[9] [9] Chan Tsunghan, Jia Kui, Gao Shenghua, et al. Pcanet: A simple deep learning baseline for image classification[J]. IEEE Transactions on Image Processing,2015,24(12):5017—5032.
[10] [10] He Kaiming, Zhang Xiangyu, Ren Shaoqing, et al. Deep residual learning for image recognition[C]∥Proceedings of The IEEE Conference on Computer Vision and Pattern Recognition.IEEE Computer Society,2016:770—778.
[13] [13] Sinha Ayan, Lee Justin, Li Shuai, et al. Lensless computational imaging through deep learning[J]. arXiv: Computer Vision and Pattern Recognition,2017,4(9):1117—1125.
[14] [14] Barbastathis G, Ozcan A, Situ G. On the use of deep learning for computational imaging[J]. Optica,2019,6(8):921—943.
[15] [15] Lyu Meng, Wang Wei, Wang Hao, et al. Deep-learning-based ghost imaging[J]. Scientific Reports,2017,7(1):17865—17865.
[16] [16] Wu Yichen, Rivenson Y, Zhang Yibo, et al. Extended depth-of-field in holographic imaging using deep-learning-based autofocusing and phase recovery[J]. arXiv:Computer Vision and Pattern Recognition,2018,5(6):704—710.
[17] [17] Rivenson Y, Zhang Yibo, Gunaydin H, et al. Phase recovery and holographic image reconstruction using deep learning in neural networks[J]. Light-Science & Applications,2018,7(2):17141—17141.
[18] [18] Li Rongjian, ZengTao, Peng Hanchuan, et al. Deep learning segmentation of optical microscopy images improves 3-D neuron Reconstruction[J]. IEEE Transactions on Medical Imaging,2017,36(7):1533—1541.
[19] [19] Zhou Lina, Xiao Yin, Chen Wen, et al. Machine-learning attacks on interference-based optical encryption: experimental demonstration[J]. Optics Express,2019,27(18):26143—26154.
[20] [20] Hai Han, Pan Shuixin, Liao Meihua, et al. Cryptanalysis of random-phase-encoding-based optical cryptosystem via deep learning[J]. Optics Express,2019,27(15):21204—21213.
[21] [21] Li, Jiaosheng, Yuhui Li, Ju Li, et al. Deep-learning-based optical image hiding[J]. arXiv preprint arXiv,2003,04130:2020.
[22] [22] Jiao Shuming, Zhou Changyuan, Shi Yishi, et al. Review on optical image hiding and watermarking techniques[J]. Optics and Laser Technology,2019,109:370—380.
[23] [23] Jégou S, Drozdzal M, Vazquez D, et al. The one hundred layers tiramisu: Fully convolutional densenets for semantic segmentation[C]∥Proceedings of the IEEE conference on computer vision and pattern recognition workshops.IEEE Computer Society,2017:11—19.
[24] [24] Huang Gao, Liu Zhuang, Pleiss G, et al. Convolutional networks with dense connectivity[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2019:1—1.
Get Citation
Copy Citation Text
CHEN Qi, SHEN Tong, LI Pengfei, SUN Liujie, ZHENG Jihong. Optical watermarking reconstruction method based on FC-DenseNets-BC neural network[J]. Optical Technique, 2021, 47(2): 223
Category:
Received: Aug. 16, 2020
Accepted: --
Published Online: Sep. 9, 2021
The Author Email: Qi CHEN (19921266220@163.com)
CSTR:32186.14.