Journal of Terahertz Science and Electronic Information Technology , Volume. 22, Issue 2, 194(2024)
Research and application of EMD-NLPCA algorithm
[1] [1] KHAN J B,JAN T, KHALIL R A,et al. An efficient multistage approach for blind source separation of noisy convolutive speech mixture[J]. Applied Sciences, 2021, 11( 13):5968. doi:10.3390/app 11135968.
[2] [2] TALEB A, JUTTEN C, OLYMPIEFF S. Source separation in post nonlinear mixtures: an entropy-based algorithm[C]// Proceedings of the 1998 IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP'98(Cat. No.98CH36181). Seattle,WA,USA:IEEE, 1998:2089-2092. doi:10. 1109/ICASSP. 1998.681556.
[3] [3] XIE Kan, JIANG Kanyang, YANG Qiyu. Multi-channel underdetermined blind source separation for recorded audio mixture signals using an unmanned aerial vehicle[J]. IET Communications, 2021, 15( 10): 1412-1422. doi:10. 1049/cmu2. 12109.
[4] [4] DING Hua, WANG Yiliang, YANG Zhaojian, et al. Nonlinear blind source separation and fault feature extraction method for mining machine diagnosis[J]. Applied Sciences, 2019,9(9): 1852. doi:10.3390/app9091852.
[5] [5] CARDOSO J F. Super-symmetric decomposition of the fourth-order cumulant tensor. Blind identification of more sources than sensors[C]// ICASSP 91: 1991 International Conference on Acoustics, Speech, and Signal Processing. Toronto, ON, Canada: IEEE, 1991:3109-3112. doi:10. 1109/ICASSP. 1991. 150113.
[6] [6] GORODNITSKY I F, RAO B D, GEORGE J. Source localization in magnetoencephalography using an iterative weighted minimum norm algorithm[C]// 1992 Conference Record of the Twenty-Sixth Asilomar Conference on Signals, Systems & Computers. Pacific Grove,CA,USA:IEEE, 1992: 167-171. doi:10. 1109/ACSSC. 1992.269280.
[7] [7] LEWICKI M S, SEJNOWSKI T J. Learning nonlinear overcomplete representations for efficient coding[C]// Proceedings of the 10th International Conference on Neural Information Processing Systems. Denver,CO:MIT Press, 1997:556-562.
[11] [11] DEVILLE Y, DUARTE L T, HOSSEINI S. Nonlinear blind source separation and blind mixture identification: methods for bilinear, linear-quadratic and polynomial mixtures[M]. Cham:Springer, 2021. doi:10. 1007/978-3-030-64977-7.
[12] [12] BUREL G. Blind separation of sources:a nonlinear neural algorithm[J]. Neural Networks, 1992,5(6):937-947.
[13] [13] LAPPALAINEN H, HONKELA A. Bayesian non-linear independent component analysis by multi-layer perceptrons[M]// GIROLAMI M. Advances in independent component analysis. London:Springer, 2000:93-121. doi:10.1007/978-1-4471-0443-8_6.
[14] [14] TAN Ying, WANG Jun, ZURADA J M. Nonlinear blind source separation using a radial basis function network[J]. IEEE Transactions on Neural Networks, 2001, 12( 1): 124-134. doi:10. 1109/72.896801.
[15] [15] ALMEIDA L B. Misep-linear and nonlinear ICA based on mutual information[J]. The Journal of Machine Learning Research, 2003(4): 1297-1318. doi:10.5555/945365.964307.
[16] [16] YE Fang, CHEN Jie, GAO Lipeng, et al. A mixing matrix estimation algorithm for the time-delayed mixing model of the underdetermined blind source separation problem[J]. Circuits Systems and Signal Processing, 2019,38(4): 1889-1906.
[18] [18] MARTINEZ D, BRAY A. Nonlinear blind source separation using kernels[J]. IEEE Transactions on Neural Networks, 2003, 14( 1):228-235. doi:10. 1109/TNN.2002.806624.
[19] [19] DARMOIS G. Analyze des liaisons de probability[C]// Proceedings of International Statistics Conferences. Washington, DC: [s.n.], 1951:231.
[20] [20] HAYKIN S. Neural networks: acomprehensive foundation[M]. 2nded. Upper Saddle River,NJ:Prentice Hall, 1998:323.
[21] [21] HUANG N E,SHEN Zheng,LONG S R,et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non- stationary time series analysis[J]. Proceedings of the Royal Society of London. Series A:Mathematical,Physical and Engineering Sciences, 1998,454( 1971):903-995. doi:10. 1098/rspa. 1998.0193.
[22] [22] TANAKA T,MANDIC D P. Complex empirical mode decomposition[J]. IEEE Signal Processing Letters, 2007, 14(2): 101-104.
[23] [23] MONAHAN A H. Nonlinear principal component analysis:tropical indo-pacific sea surface temperature and sea level pressure[J]. Journal of Climate, 2001, 14(2):219-233. doi:10. 1175/ 1520-0442(2001)0132.0.CO;2.
[24] [24] HSIEH W W. Nonlinear principal component analysis of noisy data[J]. Neural Networks, 2007,20(4):434-443.
[25] [25] WANG Weihua. Blind source separation algorithm and application research[D]. Heilongjiang, China: Harbin Engineering University, 2009.
Get Citation
Copy Citation Text
TANG Mingyang, WU Yafeng, LI Jin. Research and application of EMD-NLPCA algorithm[J]. Journal of Terahertz Science and Electronic Information Technology , 2024, 22(2): 194
Category:
Received: Dec. 20, 2021
Accepted: --
Published Online: Aug. 14, 2024
The Author Email: TANG Mingyang (tmy2021100232@mail.nwpu.edu.cn)