Chinese Journal of Lasers, Volume. 48, Issue 3, 0309001(2021)
Statistical-Based Adaptive Background Modeling Algorithm for Grayscale Video
[1] Jain N K, Saini R K, Mittal P. A review on traffic monitoring system techniques[M]. ∥Ray K, Sharma T, Rawat S, et al. Soft computing: theories and applications. Advances in intelligent systems and computing. Singapore: Springer, 742, 569-577(2019).
[2] Garcia-Garcia B, Bouwmans T. Rosales Silva A J. Background subtraction in real applications: challenges, current models and future directions[J]. Computer Science Review, 35, 100204(2020).
[3] Wren C R, Azarbayejani A, Darrell T et al. Pfinder: real-time tracking of the human body[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 19, 780-785(1997).
[4] Stauffer C. GrimsonW E L. Adaptive background mixture models for real-time tracking. [C]∥Proceedings of 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, June 23-25, 1999, Fort Collins, CO, USA. New York: IEEE, 246-252(1999).
[9] Wang H Z, Suter D. Background subtraction based on a robust consensus method. [C]∥18th International Conference on Pattern Recognition (ICPR'06), August 20-24, 2006, Hong Kong, China. New York: IEEE, 223-226(2006).
[10] Maity S, Chakrabarti A, Bhattacharjee D. Block-based quantized histogram (BBQH) for efficient background modeling and foreground extraction in video. [C]∥2017 International Conference on Data Management, Analytics and Innovation (ICDMAI), February 24-26, 2017, Pune, India. New York: IEEE, 224-229(2017).
[11] Lai A N, Yoon H, Lee G. Robust background extraction scheme using histogram-wise for real-time tracking in urban traffic video. [C]∥2008 8th IEEE International Conference on Computer and Information Technology, July 8-11, 2008, Sydney, NSW, Australia. New York: IEEE, 845-850(2008).
[12] Wang Y, Jodoin P M, Porikli F et al. CDnet 2014:an expanded change detection benchmark dataset. [C]∥2014 IEEE Conference on Computer Vision and Pattern Recognition Workshops, June 23-28, 2014, Columbus, OH, USA. New York: IEEE, 393-400(2014).
[19] Horprasert T, Harwood D, Davis L S[2020-06-28]. A statistical approach for real-time robust background subtraction and shadow detection [2020-06-28].https:∥www.researchgate.net/publication/228609042_A_statistical_approach_for_real-time_robust_backg.
[22] Lou J G, Yang H, Hu W M et al. An illumination invariant change detection algorithm. [C]∥The 5th Asian Conference on Computer Vision, January 23-25, 2002, Melbourne, Australia. New York: IEEE(2002).
[23] Otsu N. A threshold selection method from gray-level histograms[J]. IEEE Transactions on Systems, Man, and Cybernetics, 9, 62-66(1979).
[24] Hofmann M, Tiefenbacher P, Rigoll G. Background segmentation with feedback: the pixel-based adaptive segmenter. [C]∥2012 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, June 16-21, 2012, Providence, RI, USA. New York: IEEE, 38-43(2012).
Get Citation
Copy Citation Text
Jiawen Wu, Shiyong Wang. Statistical-Based Adaptive Background Modeling Algorithm for Grayscale Video[J]. Chinese Journal of Lasers, 2021, 48(3): 0309001
Category: holography and information processing
Received: Jun. 29, 2020
Accepted: Sep. 9, 2020
Published Online: Feb. 8, 2021
The Author Email: Wang Shiyong (wangshiyong@mail.sitp.ac.cn)