Chinese Journal of Liquid Crystals and Displays, Volume. 38, Issue 6, 819(2023)

Progress of learning-based computer-generated holography

Ke-xuan LIU, Jia-chen WU, Ze-hao HE, and Liang-cai CAO*
Author Affiliations
  • State Key Laboratory of Precision Measurement Technology and Instruments,Department of Precision Instrument,Tsinghua University,Beijing 100084,China
  • show less
    Figures & Tables(10)
    Network framework and training principle of POH generation algorithms based on data-driven deep learning
    Residual U-Net architecture
    Different generation methods of POH datasets
    3D scene inputs and corresponding optical reconstructions of TensorHolo v2 [24]
    Network framework and training principle of POH generation algorithms based on model-driven deep learning
    Network framework and training principle of the two-step model-driven deep learning method
    End-to-end network framework and optical reconstructions of Holo-Encoder[35]
    Upsampling block and optical reconstructions of 4K-DMDNet[36]
    Learning-based diffraction model called CNNprop-CNN[42]
    • Table 1. Comparison of POH generation algorithms based on data-driven and model-driven deep learning methods

      View table
      View in Article

      Table 1. Comparison of POH generation algorithms based on data-driven and model-driven deep learning methods

      数据驱动深度学习模型驱动深度学习
      网络训练约束条件相位全息图数据集可微衍射模型
      网络训练目标拟合数据集间的映射关系求逆问题的数值解
      相位全息图数据集(真值)需要,由传统算法生成不需要
      网络预测全息图速度可实时可实时
      网络预测全息图质量与传统算法相近优于传统算法
      网络预测泛化性
    Tools

    Get Citation

    Copy Citation Text

    Ke-xuan LIU, Jia-chen WU, Ze-hao HE, Liang-cai CAO. Progress of learning-based computer-generated holography[J]. Chinese Journal of Liquid Crystals and Displays, 2023, 38(6): 819

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Research Articles

    Received: Mar. 1, 2023

    Accepted: --

    Published Online: Jun. 29, 2023

    The Author Email: Liang-cai CAO (clc@tsinghua.edu.cn)

    DOI:10.37188/CJLCD.2023-0081

    Topics