Acta Laser Biology Sinica, Volume. 29, Issue 5, 399(2020)

Advances in the Photoreception of Drosophila Cryptochrome

YAO Pengcheng, ZHENG Wei, ZHOU Zhiqiang, and XU Lei
Author Affiliations
  • [in Chinese]
  • show less
    References(41)

    [1] [1] KNEUTTINGER A C, KASHIWAZAKI G, PRILL S, et al. Formation and direct repair of UV-induced dimeric DNA pyrimidine lesions[J]. Photochemistry and Photobiology, 2014, 90(1): 1-14.

    [2] [2] KAVAKLI I H, OZTüRK N, GUL S. DNA repair by photolyases[J]. Advances in Protein Chemistry and Structural Biology, 2019, 115: 1-19.

    [3] [3] YAMAMOTO J, PLAZA P, BRETTEL K. Repair of (6-4) lesions in DNA by (6-4) photolyase: 20 years of quest for the photoreaction mechanism[J]. Photochemistry and Photobiology, 2017, 93(1): 51-66.

    [4] [4] CHAVES I, POKORNY R, BYRDIN M, et al. The cryptochromes: blue light photoreceptors in plants and animals[J]. Annual Review of Plant Biology, 2011, 62: 335-364.

    [5] [5] KUMAR S S, SUN Y, ZOU S, et al. 3D holographic observatory for long-term monitoring of complex behaviors in Drosophila[J]. Scientific Reports, 2016, 6: 33001.

    [6] [6] KWOK R S, LAM V H, CHIU J C. Understanding the role of chromatin remodeling in the regulation of circadian transcription in Drosophila[J]. Fly, 2015, 9(4): 145-154.

    [7] [7] SINGH S, GIESECKE A, DAMULEWICZ M, et al. New Drosophila circadian clock mutants affecting temperature compensation induced by targeted mutagenesis of timeless[J]. Frontiers in Physiology, 2019, 10: 1442.

    [8] [8] KWEON S H, LEE J, LIM C, et al. High-amplitude circadian rhythms in Drosophila driven by calcineurin-mediated post-translational control of sarah[J]. Genetics, 2018, 209(3): 815-828.

    [9] [9] PAN X, TAYLOR M J, COHEN E, et al. Circadian clock, time-restricted feeding and reproduction[J]. International Journal of Molecular Sciences, 2020, 21: 831.

    [10] [10] ASIRIM E Z, HUMBERG T H, MAIER G L, et al. Circadian and genetic modulation of visually-guided navigation in Drosophila larvae[J]. Scientific Reports, 2020, 10: 2752.

    [11] [11] KOH K, ZHENG X, SEHGAL A. Jetlag resets the Drosophila circadian clock by promoting light-induced degradation of timeless[J]. Science, 2006, 312(5781): 1809-1812.

    [12] [12] DAMULEWICZ M, MAZZOTTA G M. One actor, multiple roles: the performances of cryptochrome in Drosophila[J]. Frontiers in Physiology, 2020, 11: 99.

    [13] [13] DUBOWY C, SEHGAL A. Circadian rhythms and sleep in Drosophila melanogaster[J]. Genetics, 2017, 205(4): 1373-1397.

    [14] [14] VAIDYA A T, TOP D, MANAHAN C C, et al. Flavin reduction activates Drosophila cryptochrome[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(51): 20455-20460.

    [15] [15] CZARNA A, BERNDT A, SINGH H R, et al. Structures of Drosophila cryptochrome and mouse cryptochrome1 provide insight into circadian function[J]. Cell, 2013, 153(6): 1394-1405.

    [16] [16] LEVY C, ZOLTOWSKI B D, JONES A R, et al. Updated structure of Drosophila cryptochrome[J]. Nature, 2013, 495(7441): E3-E4.

    [17] [17] ZOLTOWSKI B D, VAIDYA A T, TOP D, et al. Structure of full-length Drosophila cryptochrome[J]. Nature, 2011, 480(7377): 396-399.

    [18] [18] ZHANG M, WANG L, ZHONG D. Photolyase: dynamics and electron-transfer mechanisms of DNA repair[J]. Archives of Biochemistry and Biophysics, 2017, 632: 158-174.

    [19] [19] MüLLER P, YAMAMOTO J, MARTIN R, et al. Discovery and functional analysis of a 4th electron-transferring tryptophan conserved exclusively in animal cryptochromes and (6-4) photolyases[J]. Chemical Communications, 2015, 51(85): 15502-15505.

    [20] [20] BERNDT A, KOTTKE T, BREITKREUZ H, et al. A novel photoreaction mechanism for the circadian blue light photoreceptor Drosophila cryptochrome[J]. The Journal of Biological Chemistry, 2007, 282(17): 13011-13021.

    [21] [21] XU L, WEN B, WANG Y, et al. Residues at a single site differentiate animal cryptochromes from cyclobutane pyrimidine dimer photolyases by affecting the proteins’ preferences for reduced FAD[J]. ChemBioChem, 2017, 18(12): 1129-1137.

    [22] [22] DE AZEVEDO R V M, HANSEN C, CHEN K F, et al. Disrupted glutamate signaling in Drosophila generates locomotor rhythms in constant light[J]. Frontiers in Physiology, 2020, 11: 145.

    [23] [23] BUSZA A, EMERY-LE M, ROSBASH M, et al. Roles of the two Drosophila cryptochrome structural domains in circadian photoreception[J]. Science, 2004, 304(5676): 1503-1506.

    [24] [24] HOANG N, SCHLEICHER E, KACPRZAK S, et al. Human and Drosophila cryptochromes are light activated by flavin photoreduction in living cells[J]. PLoS Biology, 2008, 6(7): 1559-1569.

    [25] [25] OZTüRK N, SELBY C P, ANNAYEV Y, et al. Reaction mechanism of Drosophila cryptochrome[J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(2): 516-521.

    [26] [26] MICHAEL A K, FRIBOURGH J L, VAN GELDER R N, et al. Animal cryptochromes: divergent roles in light perception, circadian timekeeping and beyond[J]. Photochemistry and Photobiology, 2017, 93(1): 128-140.

    [27] [27] OZTüRK N, SONG S H, SELBY C P, et al. Animal type 1 cryptochromes. Analysis of the redox state of the flavin cofactor by site-directed mutagenesis[J]. The Journal of Biological Chemistry, 2008, 283(6): 3256-3263.

    [28] [28] KUTTA R J, ARCHIPOWA N, SCRUTTON N S. The sacrificial inactivation of the blue-light photosensor cryptochrome from Drosophila melanogaster[J]. Physical Chemistry Chemical Chysics, 2018, 20(45): 28767-28776.

    [29] [29] OZTüRK N, SELBY C P, SONG S H, et al. Comparative photochemistry of animal type 1 and type 4 cryptochromes[J]. Biochemistry, 2009, 48(36): 8585-8593.

    [30] [30] LIN C, TOP D, MANAHAN C C, et al. Circadian clock activity of cryptochrome relies on tryptophan-mediated photoreduction[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(15): 3822-3827.

    [31] [31] OZTüRK N, VANVICKLE-CHAVEZB S J, AKILESWARAN L, et al. Ramshackle (Brwd3) promotes light-induced ubiquitylation of Drosophila cryptochrome by DDB1-CUL4-ROC1 E3 ligase complex[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(13): 4980-4985.

    [32] [32] FROY O, CHANG D C, REPPERT S M. Redox potential: differential roles in dCRY and mCRY1 functions[J]. Current Biology, 2002, 12(2): 147-152.

    [33] [33] GEGEAR R J, FOLEY L E, CASSELMAN A, et al. Animal cryptochromes mediate magnetoreception by an unconventional photochemical mechanism[J]. Nature, 2010, 463(7282): 804-807.

    [34] [34] PESCHEL N, CHEN K F, SZABO G, et al. Light-dependent interactions between the Drosophila circadian clock factors cryptochrome, jetlag, and timeless[J]. Current Biology, 2008, 19(3): 241-247.

    [35] [35] BERNTSSON O, RODRIGUEZ R, HENRY L, et al. Photoactivation of Drosophila melanogaster cryptochrome throug

    [36] [36] GANGULY A, MANAHAN C C, TOP D, et al. Changes in active site histidine hydrogen bonding trigger cryptochrome activation[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(36): 10073-10078.

    [37] [37] BAIK L S, FOGLE K J, ROBERTS L, et al. Cryptochrome mediates behavioral executive choice in response to UV light[J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(4): 776-781.

    [38] [38] VANVICKLE-CHAVEZ S J, VAN GELDER R N. Action spectrum of Drosophila cryptochrome[J]. The Journal of Biological Chemistry, 2007, 282(14): 10561-10566.

    [39] [39] KAO Y T, TAN C, SONG S H, et al. Ultrafast dynamics and anionic active states of the flavin cofactor in cryptochrome and photolyase[J]. Journal of the American Chemical Society, 2008, 130(24): 7695-7701.

    [40] [40] BAIK L S, AU D D, NAVE C, et al. Distinct mechanisms of Drosophila cryptochrome mediated light-evoked membrane depolarization and in vivo clock resetting[J]. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(46): 23339-23344.

    [41] [41] ROMEI M G, BOXER S G. Split green fluorescent proteins: scope, limitations, and outlook[J]. Annual Review of Biophysics, 2019, 48: 19-44.

    Tools

    Get Citation

    Copy Citation Text

    YAO Pengcheng, ZHENG Wei, ZHOU Zhiqiang, XU Lei. Advances in the Photoreception of Drosophila Cryptochrome[J]. Acta Laser Biology Sinica, 2020, 29(5): 399

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Received: Apr. 16, 2020

    Accepted: --

    Published Online: Jan. 19, 2021

    The Author Email:

    DOI:10.3969/j.issn.1007-7146.2020.05.003

    Topics