Photonics Research, Volume. 10, Issue 2, 587(2022)

N-polar InGaN nanowires: breaking the efficiency bottleneck of nano and micro LEDs Editors' Pick

Xianhe Liu1,2、†, Yi Sun1、†, Yakshita Malhotra1, Ayush Pandey1, Ping Wang1, Yuanpeng Wu1, Kai Sun3, and Zetian Mi1、*
Author Affiliations
  • 1Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, Michigan 48109, USA
  • 2Guangzhou Institute of Technology, Xidian University, Guangzhou 510555, China
  • 3Department of Materials Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA
  • show less
    References(72)

    [1] A. I. Alhassan, R. M. Farrell, B. Saifaddin, A. Mughal, F. Wu, S. P. DenBaars, S. Nakamura, J. S. Speck. High luminous efficacy green light-emitting diodes with AlGaN cap layer. Opt. Express, 24, 17868-17873(2016).

    [2] J. Bai, Y. Cai, P. Feng, P. Fletcher, C. Zhu, Y. Tian, T. Wang. Ultrasmall, ultracompact and ultrahigh efficient InGaN micro light emitting diodes (μLEDs) with narrow spectral line width. ACS Nano, 14, 6906-6911(2020).

    [3] J.-X. Guo, J. Ding, C.-L. Mo, C.-D. Zheng, S. Pan, F.-Y. Jiang. Effect of AlGaN interlayer on luminous efficiency and reliability of GaN-based green LEDs on silicon substrate. Chin. Phys. B, 29, 047303(2020).

    [4] R. Hashimoto, J. Hwang, S. Saito, S. Nunoue. High-efficiency green-yellow light-emitting diodes grown on sapphire (0001) substrates. Phys. Status Solidi C, 10, 1529-1532(2013).

    [5] D. Hwang, A. Mughal, C. D. Pynn, S. Nakamura, S. P. DenBaars. Sustained high external quantum efficiency in ultrasmall blue III–nitride micro-LEDs. Appl. Phys. Express, 10, 032101(2017).

    [6] S. Kimura, H. Yoshida, K. Uesugi, T. Ito, A. Okada, S. Nunoue. Performance enhancement of blue light-emitting diodes with InGaN/GaN multi-quantum wells grown on Si substrates by inserting thin AlGaN interlayers. J. Appl. Phys., 120, 113104(2016).

    [7] P. P. Li, Y. B. Zhao, H. J. Li, J. M. Che, Z. H. Zhang, Z. C. Li, Y. Y. Zhang, L. C. Wang, M. Liang, X. Y. Yi, G. H. Wang. Very high external quantum efficiency and wall-plug efficiency 527 nm InGaN green LEDs by MOCVD. Opt. Express, 26, 33108-33115(2018).

    [8] C. D. Pynn, S. J. Kowsz, S. H. Oh, H. Gardner, R. M. Farrell, S. Nakamura, J. S. Speck, S. P. DenBaars. Green semipolar III-nitride light-emitting diodes grown by limited area epitaxy. Appl. Phys. Lett., 109, 041107(2016).

    [9] H. Sato, R. B. Chung, H. Hirasawa, N. Fellows, H. Masui, F. Wu, M. Saito, K. Fujito, J. S. Speck, S. P. DenBaars, S. Nakamura. Optical properties of yellow light-emitting diodes grown on semipolar (112¯2) bulk GaN substrates. Appl. Phys. Lett., 92, 221110(2008).

    [10] J. M. Smith, R. Ley, M. S. Wong, Y. H. Baek, J. H. Kang, C. H. Kim, M. J. Gordon, S. Nakamura, J. S. Speck, S. P. DenBaars. Comparison of size-dependent characteristics of blue and green InGaN microLEDs down to 1 μm in diameter. Appl. Phys. Lett., 116, 071102(2020).

    [11] J. J. Wierer, A. David, M. M. Megens. III-nitride photonic-crystal light-emitting diodes with high extraction efficiency. Nat. Photonics, 3, 163-169(2009).

    [12] S. Yamamoto, Y. Zhao, C.-C. Pan, R. B. Chung, K. Fujito, J. Sonoda, S. P. DenBaars, S. Nakamura. High-efficiency single-quantum-well green and yellow-green light-emitting diodes on semipolar (202¯1) GaN substrates. Appl. Phys. Express, 3, 122102(2010).

    [13] B. P. Yonkee, E. C. Young, S. P. DenBaars, S. Nakamura, J. S. Speck. Silver free III-nitride flip chip light-emitting-diode with wall plug efficiency over 70% utilizing a GaN tunnel junction. Appl. Phys. Lett., 109, 191104(2016).

    [14] T. Shioda, H. Yoshida, K. Tachibana, N. Sugiyama, S. Nunoue. Enhanced light output power of green LEDs employing AlGaN interlayer in InGaN/GaN MQW structure on sapphire (0001) substrate. Phys. Status Solidi A, 209, 473-476(2012).

    [15] C. A. Hurni, A. David, M. J. Cich, R. I. Aldaz, B. Ellis, K. Huang, A. Tyagi, R. A. DeLille, M. D. Craven, F. M. Steranka, M. R. Krames. Bulk GaN flip-chip violet light-emitting diodes with optimized efficiency for high-power operation. Appl. Phys. Lett., 106, 031101(2015).

    [16] Y. Narukawa, M. Ichikawa, D. Sanga, M. Sano, T. Mukai. White light emitting diodes with super-high luminous efficacy. J. Phys. D, 43, 354002(2010).

    [17] Y. Narukawa, J. Narita, T. Sakamoto, K. Deguchi, T. Yamada, T. Mukai. Ultra-high efficiency white light emitting diodes. Jpn. J. Appl. Phys., 45, L1084-L1086(2006).

    [18] Y. Narukawa, M. Sano, M. Ichikawa, S. Minato, T. Sakamoto, T. Yamada, T. Mukai. Improvement of luminous efficiency in white light emitting diodes by reducing a forward-bias voltage. Jpn. J. Appl. Phys., 46, L963-L965(2007).

    [19] R. T. Ley, J. M. Smith, M. S. Wong, T. Margalith, S. Nakamura, S. P. DenBaars, M. J. Gordon. Revealing the importance of light extraction efficiency in InGaN/GaN microLEDs via chemical treatment and dielectric passivation. Appl. Phys. Lett., 116, 251104(2020).

    [20] H. X. Jiang, J. Y. Lin. Nitride micro-LEDs and beyond - a decade progress review. Opt. Express, 21, A475-A484(2013).

    [21] T. Wu, C.-W. Sher, Y. Lin, C.-F. Lee, S. Liang, Y. Lu, S.-W. Huang Chen, W. Guo, H.-C. Kuo, Z. Chen. Mini-LED and micro-LED: promising candidates for the next generation display technology. Appl. Sci., 8, 1557(2018).

    [22] H. Xu, J. Zhang, K. M. Davitt, Y. K. Song, A. V. Nurmikko. Application of blue–green and ultraviolet micro-LEDs to biological imaging and detection. J. Phys. D, 41, 094013(2008).

    [23] Y.-H. Ra, R. Wang, S. Y. Woo, M. Djavid, S. M. Sadaf, J. Lee, G. A. Botton, Z. Mi. Full-color single nanowire pixels for projection displays. Nano Lett., 16, 4608-4615(2016).

    [24] Z. Liu, W. C. Chong, K. M. Wong, K. M. Lau. GaN-based LED micro-displays for wearable applications. Microelectron Eng., 148, 98-103(2015).

    [25] D. Peng, K. Zhang, V. S.-D. Chao, W. Mo, K. M. Lau, Z. Liu. Full-color pixelated-addressable light emitting diode on transparent substrate (LEDoTS) micro-displays by CoB. J. Display Technol., 12, 742-746(2016).

    [26] X. Zhang, P. Li, X. Zou, J. Jiang, S. H. Yuen, C. W. Tang, K. M. Lau. Active matrix monolithic LED micro-display using GaN-on-Si epilayers. IEEE Photon. Technol. Lett., 31, 865-868(2019).

    [27] N. McAlinden, Y. Cheng, R. Scharf, E. Xie, E. Gu, C. Reiche, R. Sharma, P. Tathireddy, P. Tathireddy, L. Rieth, S. Blair, K. Mathieson. Multisite microLED optrode array for neural interfacing. Neurophotonics, 6, 035010(2019).

    [28] D. Tsonev, H. Chun, S. Rajbhandari, J. J. D. McKendry, S. Videv, E. Gu, M. Haji, S. Watson, A. E. Kelly, G. Faulkner, M. D. Dawson, H. Haas, D. O. Brien. A 3-Gb/s single-LED OFDM-based wireless VLC link using a gallium nitride μLED. IEEE Photon. Technol. Lett., 26, 637-640(2014).

    [29] M. S. Wong, S. Nakamura, S. P. DenBaars. Review—progress in high performance III-nitride micro-light-emitting diodes. ECS J. Solid State Sci. Technol., 9(2020).

    [30] H. Li, M. S. Wong, M. Khoury, B. Bonef, H. Zhang, Y. Chow, P. Li, J. Kearns, A. A. Taylor, P. De Mierry, Z. Hassan, S. Nakamura, S. P. DenBaars. Study of efficient semipolar (11-22) InGaN green micro-light-emitting diodes on high-quality (11-22) GaN/sapphire template. Opt. Express, 27, 24154-24160(2019).

    [31] F. Olivier, S. Tirano, L. Dupré, B. Aventurier, C. Largeron, F. Templier. Influence of size-reduction on the performances of GaN-based micro-LEDs for display application. J. Lumin., 191, 112-116(2017).

    [32] M. Minami, S. Tomiya, K. Ishikawa, R. Matsumoto, S. Chen, M. Fukasawa, F. Uesawa, M. Sekine, M. Hori, T. Tatsumi. Analysis of GaN damage induced by Cl2/SiCl4/Ar plasma. Jpn. J. Appl. Phys., 50, 08JE03(2011).

    [33] R. J. Shul, L. Zhang, A. G. Baca, C. G. Willison, J. Han, S. J. Pearton, F. Ren. Inductively coupled plasma-induced etch damage of GaN p-n junctions. J. Vac. Sci. Technol. A, 18, 1139-1143(2000).

    [34] H. P. T. Nguyen, M. Djavid, K. Cui, Z. Mi. Temperature-dependent nonradiative recombination processes in GaN-based nanowire white-light-emitting diodes on silicon. Nanotechnology, 23, 194012(2012).

    [35] K. Kishino, S. Ishizawa. Selective-area growth of GaN nanocolumns on Si(111) substrates for application to nanocolumn emitters with systematic analysis of dislocation filtering effect of nanocolumns. Nanotechnology, 26, 225602(2015).

    [36] M. Mandl, X. Wang, T. Schimpke, C. Kölper, M. Binder, J. Ledig, A. Waag, X. Kong, A. Trampert, F. Bertram, J. Christen, F. Barbagini, E. Calleja, M. Strassburg. Group III nitride core–shell nano- and microrods for optoelectronic applications. Phys. Status Solidi RRL, 7, 800-814(2013).

    [37] K. Kishino, N. Sakakibara, K. Narita, T. Oto. Two-dimensional multicolor (RGBY) integrated nanocolumn micro-LEDs as a fundamental technology of micro-LED display. Appl. Phys. Express, 13, 014003(2019).

    [38] H. Sekiguchi, K. Kishino, A. Kikuchi. Emission color control from blue to red with nanocolumn diameter of InGaN/GaN nanocolumn arrays grown on same substrate. Appl. Phys. Lett., 96, 231104(2010).

    [39] H. P. T. Nguyen, S. Zhang, A. T. Connie, M. G. Kibria, Q. Wang, I. Shih, Z. Mi. Breaking the carrier injection bottleneck of phosphor-free nanowire white light-emitting diodes. Nano Lett., 13, 5437-5442(2013).

    [40] M. Pristovsek, Y. Han, T. Zhu, M. Frentrup, M. J. Kappers, C. J. Humphreys, G. Kozlowski, P. Maaskant, B. Corbett. Low defect large area semi-polar (112¯2) GaN grown on patterned (113) silicon. Phys. Status Solidi B, 252, 1104-1108(2015).

    [41] T. Wang. Topical review: development of overgrown semi-polar GaN for high efficiency green/yellow emission. Semicond. Sci. Technol., 31, 093003(2016).

    [42] S. M. Sadaf, Y. H. Ra, H. P. T. Nguyen, M. Djavid, Z. Mi. Alternating-current InGaN/GaN tunnel junction nanowire white-light emitting diodes. Nano Lett., 15, 6696-6701(2015).

    [43] X. Liu, Y. Wu, Y. Malhotra, Y. Sun, Z. Mi. Micrometer scale InGaN green light emitting diodes with ultra-stable operation. Appl. Phys. Lett., 117, 011104(2020).

    [44] K. Kishino, K. Yamano. Green-light nanocolumn light emitting diodes with triangular-lattice uniform arrays of InGaN-based nanocolumns. IEEE J. Quantum Electron., 50, 538-547(2014).

    [45] A. Uedono, K. Shojiki, K. Uesugi, S. F. Chichibu, S. Ishibashi, M. Dickmann, W. Egger, C. Hugenschmidt, H. Miyake. Annealing behaviors of vacancy-type defects in AlN deposited by radio-frequency sputtering and metalorganic vapor phase epitaxy studied using monoenergetic positron beams. J. Appl. Phys., 128, 085704(2020).

    [46] F. Akyol, D. N. Nath, S. Krishnamoorthy, P. S. Park, S. Rajan. Suppression of electron overflow and efficiency droop in N-polar GaN green light emitting diodes. Appl. Phys. Lett., 100, 111118(2012).

    [47] N. H. Tran, B. H. Le, S. Zhao, Z. Mi. On the mechanism of highly efficient p-type conduction of Mg-doped ultra-wide-bandgap AlN nanostructures. Appl. Phys. Lett., 110, 032102(2017).

    [48] Y. Wu, D. A. Laleyan, Z. Deng, C. Ahn, A. F. Aiello, A. Pandey, X. Liu, P. Wang, K. Sun, E. Ahmadi, Y. Sun, M. Kira, P. K. Bhattacharya, E. Kioupakis, Z. Mi. Controlling defect formation of nanoscale AlN: toward efficient current conduction of ultrawide-bandgap semiconductors. Adv. Electron. Mater., 6, 2000337(2020).

    [49] M. Brubaker, K. Genter, J. Weber, B. Spann, A. Roshko, P. Blanchard, T. Harvey, K. Bertness. Core-shell p-i-n GaN nanowire LEDs by N-polar selective area growth. Proc. SPIE, 10725, 1072502(2018).

    [50] M. D. Brubaker, K. L. Genter, A. Roshko, P. T. Blanchard, B. T. Spann, T. E. Harvey, K. A. Bertness. UV LEDs based on p–i–n core–shell AlGaN/GaN nanowire heterostructures grown by N-polar selective area epitaxy. Nanotechnology, 30, 234001(2019).

    [51] M. D. Brubaker, S. M. Duff, T. E. Harvey, P. T. Blanchard, A. Roshko, A. W. Sanders, N. A. Sanford, K. A. Bertness. Polarity-controlled GaN/AlN nucleation layers for selective-area growth of GaN nanowire arrays on Si(111) substrates by molecular beam epitaxy. Cryst. Growth Des., 16, 596-604(2016).

    [52] Ž. Gačević, D. G. Sánchez, E. Calleja. Formation mechanisms of GaN nanowires grown by selective area growth homoepitaxy. Nano Lett., 15, 1117-1121(2015).

    [53] K. Kishino, H. Sekiguchi, A. Kikuchi. Improved Ti-mask selective-area growth (SAG) by rf-plasma-assisted molecular beam epitaxy demonstrating extremely uniform GaN nanocolumn arrays. J. Cryst. Growth, 311, 2063-2068(2009).

    [54] X. Liu, B. H. Le, S. Y. Woo, S. Zhao, A. Pofelski, G. A. Botton, Z. Mi. Selective area epitaxy of AlGaN nanowire arrays across nearly the entire compositional range for deep ultraviolet photonics. Opt. Express, 25, 30494-30502(2017).

    [55] H. Sekiguchi, K. Kishino, A. Kikuchi. Ti-mask selective-area growth of GaN by RF-plasma-assisted molecular-beam epitaxy for fabricating regularly arranged InGaN/GaN Nanocolumns. Appl. Phys. Express, 1, 124002(2008).

    [56] H. P. T. Nguyen, M. Djavid, S. Y. Woo, X. Liu, A. T. Connie, S. Sadaf, Q. Wang, G. A. Botton, I. Shih, Z. Mi. Engineering the carrier dynamics of InGaN nanowire white light-emitting diodes by distributed p-AlGaN electron blocking layers. Sci. Rep., 5, 7744(2015).

    [57] K. Hestroffer, C. Leclere, C. Bougerol, H. Renevier, B. Daudin. Polarity of GaN nanowires grown by plasma-assisted molecular beam epitaxy on Si(111). Phys. Rev. B, 84, 245302(2011).

    [58] H. P. T. Nguyen, K. Cui, S. Zhang, S. Fathololoumi, Z. Mi. Full-color InGaN/GaN dot-in-a-wire light emitting diodes on silicon. Nanotechnology, 22, 445202(2011).

    [59] S. Y. Woo, M. Bugnet, H. P. T. Nguyen, Z. Mi, G. A. Botton. Atomic ordering in InGaN alloys within nanowire heterostructures. Nano Lett., 15, 6413-6418(2015).

    [60] X. Liu, Y. Sun, Y. Malhotra, A. Pandey, Y. Wu, K. Sun, Z. Mi. High efficiency InGaN nanowire tunnel junction green micro-LEDs. Appl. Phys. Lett., 119, 141110(2021).

    [61] C. Du, Z. Ma, J. Zhou, T. Lu, Y. Jiang, P. Zuo, H. Jia, H. Chen. Enhancing the quantum efficiency of InGaN yellow-green light-emitting diodes by growth interruption. Appl. Phys. Lett., 105, 071108(2014).

    [62] S. Zhao, S. Y. Woo, M. Bugnet, X. Liu, J. Kang, G. A. Botton, Z. Mi. Three-dimensional quantum confinement of charge carriers in self-organized AlGaN nanowires: a viable route to electrically injected deep ultraviolet lasers. Nano Lett., 15, 7801-7807(2015).

    [63] S. A. A. Muyeed, W. Sun, M. R. Peart, R. M. Lentz, X. Wei, D. Borovac, R. Song, N. Tansu, J. J. Wierer. Recombination rates in green-yellow InGaN-based multiple quantum wells with AlGaN interlayers. J. Appl. Phys., 126, 213106(2019).

    [64] T. H. Ngo, B. Gil, B. Damilano, K. Lekhal, P. De Mierry. Internal quantum efficiency and Auger recombination in green, yellow and red InGaN-based light emitters grown along the polar direction. Superlattices Microstruct., 103, 245-251(2017).

    [65] C. Zhao, T. K. Ng, C.-C. Tseng, J. Li, Y. Shi, N. Wei, D. Zhang, G. B. Consiglio, A. Prabaswara, A. A. Alhamoud, A. M. Albadri, A. Y. Alyamani, X. X. Zhang, L.-J. Li, B. S. Ooi. InGaN/GaN nanowires epitaxy on large-area MoS2 for high-performance light-emitters. RSC Adv., 7, 26665-26672(2017).

    [66] S. Deshpande, P. Bhattacharya. An electrically driven quantum dot-in-nanowire visible single photon source operating up to 150 K. Appl. Phys. Lett., 103, 241117(2013).

    [67] S. Jahangir, A. Banerjee, P. Bhattacharya. Carrier lifetimes in green emitting InGaN/GaN disks-in-nanowire and characteristics of green light emitting diodes. Phys. Status Solidi C, 10, 812-815(2013).

    [68] W. Guo, M. Zhang, A. Banerjee, P. Bhattacharya. Catalyst-free InGaN/GaN nanowire light emitting diodes grown on (001) silicon by molecular beam epitaxy. Nano Lett., 10, 3355-3359(2010).

    [69] A. G. Sarwar, S. D. Carnevale, F. Yang, T. F. Kent, J. J. Jamison, D. W. McComb, R. C. Myers. Semiconductor nanowire light-emitting diodes grown on metal: a direction toward large-scale fabrication of nanowire devices. Small, 11, 5402-5408(2015).

    [70] H. P. T. Nguyen, S. Zhang, K. Cui, X. Han, S. Fathololoumi, M. Couillard, G. A. Botton, Z. Mi. p-type modulation doped InGaN/GaN dot-in-a-wire white-light-emitting diodes monolithically grown on Si(111). Nano Lett., 11, 1919-1924(2011).

    [71] M. M. Muhammed, N. Alwadai, S. Lopatin, A. Kuramata, I. S. Roqan. High-efficiency InGaN/GaN quantum well-based vertical light-emitting diodes fabricated on β-Ga2O3 substrate. ACS Appl. Mater. Interfaces, 9, 34057-34063(2017).

    [72] F. Olivier, A. Daami, C. Licitra, F. Templier. Shockley-Read-Hall and Auger non-radiative recombination in GaN based LEDs: a size effect study. Appl. Phys. Lett., 111, 022104(2017).

    Tools

    Get Citation

    Copy Citation Text

    Xianhe Liu, Yi Sun, Yakshita Malhotra, Ayush Pandey, Ping Wang, Yuanpeng Wu, Kai Sun, Zetian Mi, "N-polar InGaN nanowires: breaking the efficiency bottleneck of nano and micro LEDs," Photonics Res. 10, 587 (2022)

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Optoelectronics

    Received: Sep. 14, 2021

    Accepted: Dec. 13, 2021

    Published Online: Feb. 9, 2022

    The Author Email: Zetian Mi (ztmi@umich.edu)

    DOI:10.1364/PRJ.443165

    Topics