Photonic Sensors, Volume. 15, Issue 2, 250230(2025)
Review on In-Situ Marine Monitoring Using Physical and Chemical Optical Fiber Sensors
[1] [1] X. Li, B. Liu, G. Zheng, Y. Ren, S. Zhang, Y. Liu,et al., “Deep-learning-based information mining from ocean remote-sensing imagery,”National Science Review, 2020, 7(10): 1584–1605.
[2] [2] V. Klemas and X. H. Yan, “Subsurface and deeper ocean remote sensing from satellites: an overview and new results,”Progress in Oceanography, 2014, 122: 1–9.
[3] [3] X. Shen, W. Kong, P. Chen, T. Chen, G. Huang, and R. Shu, “A shipborne photon-counting lidar for depth-resolved ocean observation,”Remote Sensing, 2022, 14(14): 3351.
[4] [4] M. Le Menn, P. Poli, A. David, J. Sagot, M. Lucas, A. O'Carroll,et al., “Development of surface drifting buoys for fiducial reference measurements of sea-surface temperature,”Frontiers in Marine Science, 2019, 6: 578.
[5] [5] R. Srinivasan, V. Rajendran, S. Zacharia, T. Sudhakar, and M. A. Atmanand, “Indigenized Indian drifting buoys with INSAT communication for ocean observations,”Ocean Engineering, 2017, 145: 263–267.
[6] [6] J. F. Martnez-Osuna, F. J. Ocampo-Torres, L. Gutirrez-Loza, E. Valenzuela, A. Castro, R. Alcaraz,et al., “Coastal buoy data acquisition and telemetry system for monitoring oceanographic and meteorological variables in the Gulf of Mexico,”Measurement, 2021, 183: 109841.
[7] [7] J. Chen, X. Su, X. W. Zhang, C. Choi, and D. M. Choi, “A survey on ocean observatory networks,” inProceedings of the 2018 Conference on Research in Adaptive and Convergent Systems, Hawaii, 2018, pp. 126–131.
[8] [8] R. Venkatesan, A. Tandon, D. Sengupta, and K. N. Navaneeth, “Recent trends in ocean observations,”Observing the Oceans in Real Time, 2018: 3–13.
[9] [9] L. Yang, S. Zhao, X. Wang, P. Shen, and T. Zhang, “Deep-sea underwater cooperative operation of manned/unmanned submersible and surface vehicles for different application scenarios,”Journal of Marine Science Engineering, 2022, 10(7): 909.
[10] [10] L. Wang, S. Song, and F. Li, “Overview of fibre optic sensing technology in the field of physical ocean observation,”Frontiers in Physics, 2021, 9: 745487.
[11] [11] M. A. Riza, Y. I. Go, S. W. Harun, and R. R. Maier, “FBG sensors for environmental and biochemical applications − a review,”IEEE Sensors Journal, 2020, 20(14): 7614–7627.
[12] [12] R. Min, Z. Liu, L. Pereira, C. Yang, Q. Sui, and C. Marques, “Optical fiber sensing for marine environment and marine structural health monitoring: a review,”Optics Laser Technology, 2021, 140: 107082.
[13] [13] A. Shadab, S. K. Raghuwanshi, and S. J. Kumar, “Advances in micro-fabricated fiber Bragg grating for detection of physical, chemical and biological parameters – a review,”IEEE Sensors Journal, 2022, 22(16): 15650–15660.
[14] [14] V. Kumar, S. K. Raghuwanshi, and S. Kumar, “Advances in nanocomposite thin-film-based optical fiber sensors for environmental health monitoring-a review,”IEEE Sensors Journal, 2022, 22(15): 14696–14707.
[15] [15] Y. C. Li, H. B. Xin, H. X. Lei, L. L. Liu, Y. Z. Li, Y. Zhang,et al., “Manipulation and detection of single nanoparticles and biomolecules by a photonic nanojet,”Light: Science & Applications, 2016, 5(12): e16176.
[16] [16] Y. C. Li, X. S. Liu, and B. J. Li, “Single-cell biomagnifier for optical nanoscopes and nanotweezers,”Light: Science & Applications, 2019, 8(1): 61.
[17] [17] X. Li, N. Chen, X. Zhou, P. Gong, S. Wang, Y. Zhang,et al., “A review of specialty fiber biosensors based on interferometer configuration,”Journal of Biophotonics, 2021, 14(6): e202100068.
[18] [18] F. Esposito, “Chemical sensors based on long period fiber gratings: a review,”Results in Optics, 2021, 5: 100196.
[19] [19] N. Cennamo, M. Pesavento, and L. Zeni, “A review on simple and highly sensitive plastic optical fiber probes for bio-chemical sensing,”Sensors and Actuators B: Chemical, 2021, 331: 129393.
[20] [20] M. Mieloszyk, K. Majewska, and W. Ostachowicz, “Application of embedded fibre Bragg grating sensors for structural health monitoring of complex composite structures for marine applications,”Marine Structures, 2021, 76: 102903.
[21] [21] C. Doyle and C. Staveley, “Application of optical fibre sensors for marine structural monitoring,” inMarine Composites Conference Proceedings,Plymouth, 2003, pp. 107–115.
[22] [22] Y. Qian, Y. Zhao, Q. L Wu, and Y. Yang, “Review of salinity measurement technology based on optical fiber sensor,”Sensors Actuators B: Chemical, 2018, 260: 86–105.
[23] [23] C. U. Kumari, D. Samiappan, R. Kumar, and T. Sudhakar, “Fiber optic sensors in ocean observation: a comprehensive review,”Optik, 2019, 179: 351–360.
[24] [24] H. L. Liang, J. Wang, L. H. Zhang, J. Liu, and S. Wang, “Review of optical fiber sensors for temperature, salinity, and pressure sensing and measurement in seawater,”Sensors, 2022, 22(14): 5363.
[25] [25] J. J. Lao, P. Sun, F. Liu, X. J. Zhang, C. X. Zhao, W. J. Mai,et al., “In situ plasmonic optical fiber detection of the state of charge of supercapacitors for renewable energy storage,”Light: Science & Applications, 2018, 7(1): 34.
[26] [26] Z. Li, Y. G. Xiao, F. Liu, X. Yan, D. You, K. Li,et al., “Operando optical fiber monitoring of nanoscale and fast temperature changes during photo-electrocatalytic reactions,”Light: Science & Applications, 2022, 11(1): 220.
[27] [27] L. H. Liu, X. J. Zhang, Q. Zhu, K. Li, Y. Lu, X. Zhou,et al., “Ultrasensitive detection of endocrine disruptors via superfine plasmonic spectral combs,”Light: Science & Applications, 2021, 10(1): 181.
[28] [28] D. W. Zhou, Y. K. Dong, B. Z. Wang, C. Pang, D. Ba, H. Zhang,et al., “Single-shot BOTDA based on an optical chirp chain probe wave for distributed ultrafast measurement,”Light: Science & Applications, 2018, 7(1): 32.
[29] [29] Y. Liu, Z. Jing, Q. Liu, A. Li, A. Lee, Y. Cheung,et al., “All-silica fiber-optic temperature-depth-salinity sensor based on cascaded EFPIs and FBG for deep sea exploration,”Optics Express, 2021, 29(15): 23953–23966.
[30] [30] S. Dass and R. Jha, “Underwater low acoustic frequency detection based on in-line Mach-Zehnder interferometer,”Journal of the Optical Society of America B, 2021, 38(2): 570–575.
[31] [31] S. S. Wang, H. J. Yang, Y. P. Liao, X. Wang, and J. Wang, “High-sensitivity salinity and temperature sensing in seawater based on a microfiber directional coupler,”IEEE Photonics Journal, 2016, 8(4): 1–9.
[32] [32] L. Men, P. Lu, and Q. Chen, “A multiplexed fiber Bragg grating sensor for simultaneous salinity and temperature measurement,”Journal of Applied Physics, 2008, 103(5): 053107.
[33] [33] L. V. Nguyen, M. Vasiliev, and K. Alameh, “Three-wave fiber Fabry-Prot interferometer for simultaneous measurement of temperature and water salinity of seawater,”IEEE Photonics Technology Letters, 2011, 23(7): 450–452.
[34] [34] D. Luo, J. Ma, Z. Ibrahim, and Z. Ismail, “Etched FBG coated with polyimide for simultaneous detection the salinity and temperature,”Optics Communications, 2017, 392: 218–222.
[35] [35] Y. Zhao, Q. L. Wu, and Y. N. Zhang, “Theoretical analysis of high-sensitive seawater temperature and salinity measurement based on C-type micro-structured fiber,”Sensors Actuators B: Chemical, 2018, 258: 822–828.
[36] [36] Q. L. Wu, Y. Zhao, E. Si-Yu, and Y. N. Zhang, “Reflex optical fiber probe for simultaneous determination of seawater salinity and temperature by surface plasmon resonance,”Instrumentation Science & Technology, 2019, 47(4): 374–388.
[37] [37] S. S. Wang, T. Q. Liu, X. Wang, Y. Liao, J. Wang, and J. Wen, “Hybrid structure Mach-Zehnder interferometer based on silica and fluorinated polyimide microfibers for temperature or salinity sensing in seawater,”Measurement, 2019, 135: 527–536.
[38] [38] T. Q. Liu, J. Wang, Y. P. Liao, L. Yang, and S. Wang, “Splicing point tapered fiber Mach-Zehnder interferometer for simultaneous measurement of temperature and salinity in seawater,”Optics Express, 2019, 27(17): 23905–23918.
[39] [39] H. Li, X. Qian, W. Zheng, Y. Lu, E. Siyu, and Y. N. Zhang, “Theoretical and experimental characterization of a salinity and temperature sensor employing optical fiber surface plasmon resonance (SPR),”Instrumentation Science & Technology, 2020, 48(6): 601–615.
[40] [40] C. K. Yang, S. Q. Zhang, D. L. Shi, Y. Wu, Z. Cao, and Z. Liu, “Simultaneous measurement of salinity and temperature using a Sagnac interferometer based on concatenated polarization-maintaining fiber tapers,”Applied Optics, 2021, 60(28): 8904–8909.
[41] [41] H. K. Zheng, Y. Zhao, R. Q. Lv, Z. T. Lin, X. X. Wang, Y. F. Zhou,et al., “Reflective optical fiber sensor based on dual Fabry Perot cavities for simultaneous measurement of salinity and temperature,”IEEE Sensors Journal, 2021, 21(24): 27495–27502.
[42] [42] Y. Zhao, J. Zhao, X. X. Wang, Y. Peng, and X. G. Hu, “Femtosecond laser-inscribed fiber-optic sensor for seawater salinity and temperature measurements,”Sensors Actuators B: Chemical, 2022, 353: 131134.
[43] [43] F. N. Zhuang, J. Wang, H. J. Yang, H. L. Liang, Y. W. Luo, and S. S. Wang, “Demodulation of temperature and salinity with variable sensitivity matrix based on developed refractive index of seawater in infrared band,”IEEE Sensors Journal, 2023, 23(16): 8242–18250.
[44] [44] J. Lu, Z. Zhang, Y. Yu, S. Qin, F. Zhang, M. Li,et al., “Simultaneous measurement of seawater temperature and pressure with polydimethylsiloxane packaged optical microfiber coupler combined Sagnac loop,”Journal of Lightwave Technology, 2021, 40(1): 323–333.
[45] [45] J. Yin, T. Liu, J. Jiang, K. Liu, S. Wang, Z. Qin,et al., “Batch-producible fiber-optic Fabry-Prot sensor for simultaneous pressure and temperature sensing,”IEEE Photonics Technology Letters, 2014, 26(20): 2070–2073.
[46] [46] D. B. Duraibabu, G. Leen, D. Toal, T. Newe, E. Lewis, and G. Dooly, “Underwater depth and temperature sensing based on fiber optic technology for marine and fresh water applications,”Sensors, 2017, 17(6): 1228.
[47] [47] Q. L. Wu, Y. Zhao, Y. N. Zhang, S. X. Liu, Q. Zhao, and S. Z. Chen, “Theoretical analysis of seawater depth and temperature measurement with C-type micro-structured fiber grating,”Optical Fiber Technology, 2019, 47: 133–140.
[48] [48] Y. F. Hou, J. Wang, X. Wang, Y. P. Liao, L. Yang, E. L. Cai,et al., “Simultaneous measurement of pressure and temperature in seawater with PDMS sealed microfiber Mach-Zehnder interferometer,”Journal of Lightwave Technology, 2020, 38(22): 6412–6421.
[49] [49] X. Lei, X. Dong, C. Lu, T. Sun, and K. T. Grattan, “Underwater pressure and temperature sensor based on a special dual-mode optical fiber,”IEEE Access, 2020, 8: 146463–146471.
[50] [50] J. Lu, Z. Zhang, Y. Yu, S. Qin, F. Zhang, M. Li,et al., “Simultaneous measurement of seawater temperature and pressure with polydimethylsiloxane packaged optical microfiber coupler combined Sagnac loop,”Journal of Lightwave Technology, 2021, 40(1): 323–333.
[51] [51] S. Q. Zhang, Y. C. Mei, T. T. Xia, Z. Cao, Z. Liu, and Z. Li, “Simultaneous measurement of temperature and pressure based on Fabry-Perot Interferometry for marine monitoring,”Sensors, 2022, 22(13): 4979.
[52] [52] C. Zhai, Q. Li, Y. Li, L. Yu, S. Wang, J. Xu,et al., “Experimental study on simultaneous measurement of temperature and pressure of seawater based on the reflecting polarization interferometer incorporated with bow tie fiber,”IEEE Sensors Journal, 2023, 23(15): 6893–16899.
[53] [53] J. C. Liu, Y. F. Hou, J. Wang, G. Zhong, L. Zhang, F. Zhuang,et al., “Multi-parameter demodulation for temperature, salinity and pressure sensor in seawater based on the semi-encapsulated microfiber Mach-Zehnder interferometer,”Measurement, 2022, 196: 111213.
[54] [54] Y. J. Wang, X. Dai, Q. Zhao, F. Li, X. Gao, and B. X. Bo, “Based on fiber grating the high sensitivity all optical fiber CTD,” inOFS2012 22nd International Conference on Optical Fiber Sensors, Beijing, 2012, pp. 704–707.
[55] [55] Y. Yu, Q. Bian, Y. Lu, X. Zhang, J. Yang, and L. Liang, “High sensitivity all optical fiber conductivity-temperature-depth (CTD) sensing based on an optical microfiber coupler (OMC),”Journal of Lightwave Technology, 2018, 37(11): 2739–2747.
[56] [56] Y. Zhao, Q. L. Wu, and Y. N. Zhang, “Simultaneous measurement of salinity, temperature and pressure in seawater using optical fiber SPR sensor,”Measurement, 2019, 148: 106792.
[57] [57] J. Hribar and D. Donlagic, “Optical flow sensor based on the thermal time-of-flight measurement,”Optics Express, 2021, 29(6): 8846–8860
[58] [58] P. Lu and Q. Chen, “Fiber Bragg grating cantilever sensor system for fluid flow monitoring with temperature compensation,” in21st International Conference on Optical Fiber Sensors, Ottawa, 2011, pp. 1264–1267.
[59] [59] W. Peng, G. R. Pickrell, Z. Huang, J. Xu, D. W. Kim, B. Qi,et al., “Self-compensating fiber optic flow sensor system and its field applications,”Applied Optics, 2004, 43(8): 1752–1760.
[60] [60] P. Lu and Q. J. Chen, “Fiber Bragg grating sensor for simultaneous measurement of flow rate and direction,”Measurement Science Technology, 2008, 19(12): 125302.
[61] [61] L. Yuan, J. Yang, and Z. Liu, “Fiber optic flow velocity sensor based on an in-fiber integrated Michelson interferometer,” in19th International Conference on Optical Fibre Sensors, Perth, 2008, pp. 486–489.
[62] [62] G. Liu, Q. Sheng, G. R. L. Piassetta, W. Hou, and M. Han, “A fiber-optic water flow sensor based on laser-heated silicon Fabry-Prot cavity,” inFiber Optic Sensors and Applications XIII, Baltimore, 2016, pp. 288–294.
[63] [63] N. Uddin, G. Liu, Q. Sheng, W. Hou, and M. Han, “Reduction of directivity of the fiber-optic water flow sensor based on laser-heated silicon Fabry-Perot cavity by using a spherical Tin shell,” inFiber Optic Sensors and Applications XVI, Baltimore, 2019, pp. 145–150.
[64] [64] Y. Li, S. Wang, L. Yu, and J. Wang, “Target and cantilever supported seawater velocity sensor based on panda fiber polarization interferometer,”Optics Express, 2023, 31(22): 35956–35970.
[65] [65] M. Ding, T. Zhang, R. Wang, D. Su, and X. Qiao, “A low-flow fiber-optic flowmeter based on bending measuring using a cladding fiber Bragg grating,”IEEE Sensors Journal, 2023, 23(4): 3609–3614.
[66] [66] G. Liu, M. Han, W. Hou, S. Matt, and W. Goode, “A miniature fiber-optic sensor for high-resolution and high-speed temperature sensing in ocean environment,” inOcean Sensing and Monitoring VII, Baltimore, 2015, pp. 80–85.
[67] [67] L. Wang, Y. Wang, J. Wang, L. Ch'ien, and F. Li, “Fiber Bragg grating sensor for measuring rate of dissipation of turbulent kinetic energy of ocean,”Optical Engineering, 2020, 59(8): 087105–087105.
[68] [68] M. Wahlberg, B. Mhl, and P. Teglberg Madsen, “Estimating source position accuracy of a large-aperture hydrophone array for bioacoustics,”The Journal of the Acoustical Society of America, 2001, 109(1): 397–406.
[69] [69] E. L. Mciver, M. A. Marchaterre, A. N. Rice, and A. H. Bass, “Novel underwater soundscape: acoustic repertoire of plainfin midshipman fish,”Journal of Experimental Biology, 2014, 217(13): 2377–2389.
[70] [70] A. Hurrell and F. Duck, “A two-dimensional hydrophone array using piezoelectric PVDF,”IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2000, 47(6): 1345–1353.
[71] [71] L. G. H. Staaf, E. Khler, D. Parthasarathy, P. Lundgren, and P. Enoksson, “Simulation and experimental demonstration of improved efficiency in coupled piezoelectric cantilevers by extended strain distribution,”Sensors Actuators A: Physical, 2015, 229: 136–140.
[72] [72] J. Ma, Y. Yu, and W. Jin, “Demodulation of diaphragm based acoustic sensor using Sagnac interferometer with stable phase bias,”Optics Express, 2015, 23(22): 29268–29278.
[73] [73] D. Pawar, C. N. Rao, R. K. Choubey, and S. N. Kale, “Mach-Zehnder interferometric photonic crystal fiber for low acoustic frequency detections,”Applied Physics Letters, 2016, 108(4): 041912.
[74] [74] J. Liu, L. Yuan, J. Lei, W. Zhu, B. Cheng, Q. Zhang,et al., “Micro-cantilever-based fiber optic hydrophone fabricated by a femtosecond laser,”Optics Letters, 2017, 42(13): 2459–2462.
[75] [75] Z. Luo, Y. Yang, Z. Wang, M. Yu, C. Wu, T. Chang,et al., “Low-frequency fiber optic hydrophone based on weak value amplification,”Optics Express, 2020, 28(18): 25935–25948.
[76] [76] W. Wang, Y. Pei, L. Ye, and K. Song, “High-sensitivity cuboid interferometric fiber-optic hydrophone based on planar rectangular film sensing,”Sensors, 2020, 20(22): 6422.
[77] [77] Y. Yang, Z. Luo, Z. Wang, Y. Zhang, T. Chang, M. Yu,et al., “High-performance fiber optic interferometric hydrophone based on push-pull structure,”IEEE Transactions on Instrumentation, 2021, 70: 1–13.
[78] [78] W. Xiong, Q. Shu, P. Lu, W. Zhang, Z. Qu, D. Liu,et al., “Sensitivity enhanced fiber optic hydrophone based on an extrinsic Fabry-Perot interferometer for low-frequency underwater acoustic sensing,”Optics Express, 2022, 30(6): 9307–9320.
[79] [79] F. A. Bruno, M. Janneh, A. Gunda, R. Kyselica, P. Stajanca, S. Werzinger,et al., “Fiber optic hydrophones for towed array applications,”Optics Lasers in Engineering, 2023, 160: 107269.
[80] [80] Y. C. Moo, M. Z. Matjafri, H. S. Lim, and C. H. Tan, “New development of optical fibre sensor for determination of nitrate and nitrite in water,”Optik, 2016, 127(3): 1312–1319.
[81] [81] M. Hu, B. Chen, L. Yao, C. Yang, X. Chen, and R. Kan, “A fiber-integrated CRDS sensor for in-situ measurement of dissolved carbon dioxide in seawater,”Sensors, 2021, 21(19): 6436.
[82] [82] M. Luo and Q. Wang, “A reflective optical fiber SPR sensor with surface modified hemoglobin for dissolved oxygen detection,”Alexandria Engineering Journal, 2021, 60(4): 4115–4120.
[83] [83] Y. Zhao, M. Lei, S. X. Liu, and Q. Zhao, “Smart hydrogel-based optical fiber SPR sensor for pH measurements,”Sensors Actuators B: Chemical, 2018, 261: 226–232.
[84] [84] B. Schyrr, S. Pasche, E. Scolan, R. Ischer, D. Ferrario, J. A. Porchet,et al., “Development of a polymer optical fiber pH sensor for on-body monitoring application,”Sensors Actuators B: Chemical, 2014, 194: 238–248.
[85] [85] K. Wang, D. Klimov, and Z. Kolber, “Long period grating-based fiber-optic pH sensor for ocean monitoring,” inOptics East 2007, Boston, 2007, pp. 306–310.
[86] [86] K. Wang, D. Klimov, and Z. Kolber, “Long period grating-based ocean pH sensor in an SMS fiber,” inSensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems 2008, San Diego, 2008, pp. 1144–1148.
[87] [87] J. Goicoechea, C. R. Zamarreo, I. R. Matias, and F. J. Arregui, “Optical fiber pH sensors based on layer-by-layer electrostatic self-assembled Neutral Red,”Sensors Actuators B: Chemical, 2008, 132(1): 305–311.
[88] [88] P. J. Rivero, J. Goicoechea, M. Hernaez, A. B. Socorro, I. R. Matias, and F. J. Arregui, “Optical fiber resonance-based pH sensors using gold nanoparticles into polymeric layer-by-layer coatings,”Microsystem Technologies, 2016, 22: 1821–1829.
[89] [89] M. R. R. Khan, A. V. Watekar, and S. W. Kang, “Fiber-optic biosensor to detect pH and glucose,”IEEE Sensors Journal, 2017, 18(4): 1528–1538.
[90] [90] X. Cheng, J. Bonefacino, B. O. Guan, H. Y. Tam, “All-polymer fiber-optic pH sensor,”Optics Express, 2018, 26(11): 14610–14616.
[91] [91] M. Lei, Y. N. Zhang, B. Han, Q. Zhao, A. Zhang, and D. Fu, “In-line Mach-Zehnder interferometer and FBG with smart hydrogel for simultaneous pH and temperature detection,”IEEE Sensors Journal, 2018, 18(18): 7499–7504.
[92] [92] J. Janting, J. K. Pedersen, G. Woyessa, K. Nielsen, and O. Bang, “Small and robust all-polymer fiber Bragg grating based pH sensor,”Journal of Lightwave Technology, 2019, 37(18): 4480–4486.
[93] [93] W. H. Chen, W. D. Dillon, E. A. Armstrong, S. C. Moratti, and C. M. McGraw, “Self-referencing optical fiber pH sensor for marine microenvironments,”Talanta, 2021, 225: 121969.
[94] [94] K. J. Lee, P. K. Capon, H. Ebendorff-Heidepriem, E. Keenan, F. Brownfoot, and E. P. Schartner, “Influence of the photopolymerization matrix on the indicator response of optical fiber pH sensors,”Sensors Actuators B: Chemical, 2023, 376: 132999.
[95] [95] P. G. Kim, M. E. Park, and K. Y. Sung, “Distribution of heavy metals in marine sediments at the ocean waste disposal site in the Yellow Sea, South Korea,”Geosciences Journal, 2009, 13: 15–24.
[96] [96] B. Gu, M. J. Yin, A. P. Zhang, J. W. Qian, and S. He, “Fiber-optic metal ion sensor based on thin-core fiber modal interferometer with nanocoating self-assembled via hydrogen bonding,”Sensors Actuators B: Chemical, 2011, 160(1): 1174–1179.
[97] [97] R. Verma and B. D. Gupta, “Detection of heavy metal ions in contaminated water by surface plasmon resonance based optical fibre sensor using conducting polymer and chitosan,”Food Chemistry, 2015, 166: 568–575.
[98] [98] J. Yang, L. H. Chen, Y. Zheng, X. Dong, R. Raghunandhan, P. L. So,et al., “Heavy metal ions probe with relative measurement of fiber Bragg grating,”Sensors Actuators B: Chemical, 2016, 230: 353–358.
[99] [99] R. Raghunandhan, L. Chen, H. Long, L. L. Leam, P. L. So, X. Ning,et al., “Chitosan/PAA based fiber-optic interferometric sensor for heavy metal ions detection,”Sensors Actuators B: Chemical, 2016, 233: 31–38.
[100] [100] W. B. Ji, S. H. K. Yap, N. Panwar, L. L. Zhang, B. Lin, K. T. Yong,et al., “Detection of low-concentration heavy metal ions using optical microfiber sensor,”Sensors Actuators B: Chemical, 2016, 237: 142–149.
[101] [101] P. Kishore, M. S. Shankar, and M. Satyanarayana, “Detection of trace amounts of chromium (VI) using hydrogel coated Fiber Bragg grating,”Sensors Actuators B: Chemical, 2017, 243: 626–633.
[102] [102] S. Jia, C. Bian, J. H. Tong, J. Z. Sun, and S. H. Xia, “A Fiber-optic sensor based on plasmon coupling effects in gold nanoparticles core-satellites nanostructure for determination of mercury ions (II),”Chinese Journal of Analytical Chemistry, 2017, 45(6): 785–790.
[103] [103] C. Liu, Z. Sun, L. Zhang, J. Lv, X. F. Yu, and X. Chen, “Black phosphorus integrated tilted fiber grating for ultrasensitive heavy metal sensing,”Sensors Actuators B: Chemical, 2018, 257: 1093–1098.
[104] [104] A. M. Shrivastav and B. D. Gupta, “Ion-imprinted nanoparticles for the concurrent estimation of Pb (II) and Cu (II) ions over a two channel surface plasmon resonance-based fiber optic platform,”Journal of Biomedical Optics, 2018, 23(1): 017001–017001.
[105] [105] S. Ghosh, K. Dissanayake, S. Asokan, T. Sun, B. A. Rahman, and K. T. Grattan, “Lead (Pb2+) ion sensor development using optical fiber gratings and nanocomposite materials,”Sensors Actuators B: Chemical, 2022, 364: 131818.
[106] [106] X. L. Peng, Z. Y. Yang, B. Peng, Z. Li, Z. C. Ren, X. Wang,et al., “In situ plasmonic & electrochemical fiber-optic sensor for multi-metal-ions detection,”Science China Information Sciences, 2024, 67(1): 1–11.
[107] [107] L. Yang, J. Wang, S. S. Wang, Y. Liao, and Y. Li, “A new method to improve the sensitivity of nitrate concentration measurement in seawater based on dispersion turning point,”Optik, 2020, 205: 164202.
[108] [108] Y. Xiong, D. Q. Zhu, C. F. Duan, J. W. Wang, and Y. F. Guan, “Small-volume fiber-optic evanescent-wave absorption sensor for nitrite determination,”Analytical Bioanalytical Chemistry, 2010, 396: 943–948.
[109] [109] A. Lalasangi, J. Akki, K. Manohar, T. Srinivas, P. Radhakrishnan, S. Kher,et al., “Fiber Bragg grating sensor for detection of nitrate concentration in water,”Sensors Transducers, 2011, 125(2): 187–193.
[110] [110] M. Y. Chong, M. Z. M. Jafri, L. H. San, and T. C. Ho, “Detection of nitrate ions in water by optical fiber,” in2012 International Conference on Computer and Communication Engineering, Kuala Lumpur, 2012, pp. 271–273.
[111] [111] J. L. Camas-Anzueto, A. E. Aguilar-Castillejos, J. H. Castan-Gonzlez, M. C. Lujpn-Hidalgo, H. H. De Leon, and R. M. Grajales, “Fiber sensor based on Lophine sensitive layer for nitrate detection in drinking water,”Optics Lasers in Engineering, 2014, 60: 38–43.
[112] [112] N. M. Razali, S. Ambran, A. Hamzah, N. Abdullah, O. Mikami, H. Hara,et al., “Etched fiber Bragg grating sensor for nitrate sensing application,” inIEEE 7th International Conference on Photonics, Langkawi, 2018, pp. 1–3.
[113] [113] Y. N. Zhang, E. Siyu, B. Tao, Q. Wu, and B. Han, “Reflective SPR sensor for simultaneous measurement of nitrate concentration and temperature,”IEEE Transactions on Instrumentation Measurement, 2019, 68(11): 4566–4574.
[114] [114] P. Ja'afar, N. Razali, N. Zaidi, F. Ahmad, M. F. Omar, A. K. Ismail,et al., “Graphene coated optical fiber tip sensor for nitrate sensing application,” inIEEE 8th International Conference on Photonics, Kota Bharu, 2020, pp. 3–4.
[115] [115] N. A. A. Kadir, N. Irawati, A. A. A. Jafry, N. M. Razali, A. Hamzah, and S. W. Harun, “Sodium nitrate sensor based on D-shaped fiber structure,”Measurement, 2020, 163: 107927.
[116] [116] N. A. A. Kadir, M. H. A. Wahid, M. Q. Lokman, N. Irawati, A. Hamzah, and S. W. Harun, “Side-polished optical fiber structure for sodium nitrate sensor,”IEEE Sensors Journal, 2020, 20(11): 5929–5934.
[117] [117] A. Al Noman, J. N. Dash, X. Cheng, H. Y. Tam, and C. Yu, “Mach-Zehnder interferometer based fiber-optic nitrate sensor,”Optics Express, 2022, 30(21): 38966–38974.
[118] [118] Z. Lu, M. Dai, K. Xu, J. Chen, and Y. Liao, “A high precision, fast response, and low power consumption in situ optical fiber chemical pCO2 sensor,”Talanta, 2008, 76(2): 353–359.
[119] [119] G. Neurauter, I. Klimant, and O. S. Wolfbeis, “Fiber-optic microsensor for high resolution pCO2 sensing in marine environment,”Fresenius' Journal of Analytical Chemistry, 2000, 366: 481–487.
[120] [120] S. I. Rubin and H. P. Wu, “A novel fiber-optic sensor for the long-term, autonomous measurement of pCO2 in seawater,”Oceans, 2000, 1: 31–639.
[121] [121] C. S. Chu and Y. L. Lo, “Highly sensitive and linear optical fiber carbon dioxide sensor based on sol-gel matrix doped with silica particles and HPTS,”Sensors Actuators B Chemical, 2009, 143(1): 205–210.
[122] [122] L. Liu, S. P. Morgan, R. Correia, and S. Korposh, “A single-film fiber optical sensor for simultaneous measurement of carbon dioxide and relative humidity,”Optics Laser Technology, 2022, 147: 107696.
[123] [123] J. Gouin, F. Baros, D. Birot, and J. C. Andre, “A fibre-optic oxygen sensor for oceanography,”Sensors Actuators B: Chemical, 1997, 39(1–3): 401–406.
[124] [124] C. S. Chu and Y. L. Lo, “Optical fiber dissolved oxygen sensor based on Pt (II) complex and core-shell silica nanoparticles incorporated with sol-gel matrix,”Sensors Actuators B Chemical, 2010, 151(1): 83–89.
[125] [125] L. Q. Guo, Q. Y. Ni, J. Q. Li, L. Zhang, X. C. Lin, Z. H. Xie,et al., “A novel sensor based on the porous plastic probe for determination of dissolved oxygen in seawater,”Talanta, 2008, 74(4): 1032–1037.
[126] [126] Y. Xiong, J. Xu, J. W. Wang, and Y. F. Guan, “A fiber-optic evanescent wave sensor for dissolved oxygen detection based on novel hybrid fluorinated xerogels immobilized with [Ru(bpy)3]2+,”Analytical Bioanalytical Chemistry, 2009, 394(3): 919–923.
[127] [127] Y. Xiong, J. Xu, D. Q. Zhu, C. F. Duan, and Y. F. Guan, “Fiber-optic fluorescence sensor for dissolved oxygen detection based on fluorinated xerogel immobilized with ruthenium (II) complex,”Journal of Sol-Gel Science Technology, 2010, 53(2): 441–447.
[128] [128] C. S. Chu and C. Y. Chuang, “Optical fiber sensor for dual sensing of dissolved oxygen and Cu2+ ions based on PdTFPP/CdSe embedded in sol-gel matrix,”Sensors Actuators B Chemical, 2015, 209: 94–99.
[129] [129] Y. K. Zhao, H. X. Zhang, Q. W. Jin, D. Jia, and T. Liu, “Ratiometric optical fiber dissolved oxygen sensor based on fluorescence quenching principle,”Sensors, 2022, 22(13): 4811.
[130] [130] N. Daz-Herrera, O. Esteban, M. Navarrete, M. Le Haitre, and A. Gonzlez-Cano, “In situ salinity measurements in seawater with a fibre-optic probe,”Measurement Science Technology, 2006, 17(8): 2227.
[131] [131] X. R. Li, Y. Q. Li, and Z. Y. Wen, “300 m optic fiber Bragg grating temperature sensing system for seawater measurement,”Journal of Physics: Conference Series, 2011: 012130.
[132] [132] Y. C. Kim, J. A. Cramer, and K. S. Booksh, “Investigation of a fiber optic surface plasmon spectroscopy in conjunction with conductivity as an in situ method for simultaneously monitoring changes in dissolved organic carbon and salinity in coastal waters,”Analyst, 2011, 136(20): 4350–4356.
[133] [133] K. Wang, Q. Shi, C. Tian, F. Duan, M. Zhang, and Y. Liao, “The design of integrated demodulation system of optical fiber hydrophone array for oceanic oil exploration,” inInternational Conference on Optical Instruments & Technology: Optical Sensors & Applications, Beijing, 2011, 8199, pp. 173–181.
[134] [134] J. Wang, H. Luo, Z. Meng, and Y. Hu, “Experimental research of an all-polarization-maintaining optical fiber vector hydrophone,”Journal of Lightwave Technology, 2012, 30(8): 1178–1184.
[135] [135] S. Carlino, M. Mirabile, C. Troise, M. Sacchi, L. Zeni, A. Minardo,et al., “Distributed-temperature-sensing using optical methods: a first application in the offshore area of Campi Flegrei caldera (Southern Italy) for volcano monitoring,”Remote Sensing, 2016, 8(8): 674.
[136] [136] C. G. Izquierdo, A. Garcia-Benad, P. Corredera, S. Hernandez, A. G. Calvo, J. del Ro Fernandez,et al., “Traceable sea water temperature measurements performed by optical fibers,”Measurement, 2018, 127: 124–133.
[137] [137] L. Wang, Y. J. Wang, and F. Li, “Fiber temperature-depth profile measurement system application in the North Yellow Sea,” in2018 Asia Communications and Photonics Conference, Hangzhou, 2018, pp. 1–3.
[138] [138] M. Y. Plotnikov, V. S. Lavrov, P. Y. Dmitraschenko, A. V. Kulikov, and I. K. Meshkovskiy, “Thin cable fiber-optic hydrophone array for passive acoustic surveillance applications,”IEEE Sensors Journal, 2019, 19(9): 3376–3382.
[139] [139] L. Wang, Y. Wang, J. Wang, and F. Li, “A high spatial resolution FBG sensor array for measuring ocean temperature and depth,”Photonic Sensors, 2020, 10(1): 57–66.
[140] [140] Q. Zhao, Y. Wang, P. Sun, D. Du, L. Yu, J. Zhang,et al., “Shipborne expendable all-optical fiber ocean temperature-depth profile sensor,”Applied Optics, 2022, 61(8): 2089–2095.
[141] [141] G. Yan, D. Wang, J. Long, L. Jiang, Y. Gong, Z. Ran,et al., “High-performance towing cable hydrophone array with an improved ultra-sensitive fiber-optic distributed acoustic sensing system,”Optics Express, 2023, 31(16): 25545–25556.
Get Citation
Copy Citation Text
ZHUANG Funa, LI Yu, GUO Tuan, YANG Qinghua, LUO Yunwen, WANG Jing, WANG Shanshan. Review on In-Situ Marine Monitoring Using Physical and Chemical Optical Fiber Sensors[J]. Photonic Sensors, 2025, 15(2): 250230
Received: Sep. 19, 2023
Accepted: May. 13, 2025
Published Online: May. 13, 2025
The Author Email: