Photonics Research, Volume. 9, Issue 5, 848(2021)
Breakdown of Maxwell Garnett theory due to evanescent fields at deep-subwavelength scale
[1] J. C. M. Garnett. Colours in metal glasses and in metallic films. Philos. Trans. R. Soc. A, 203, 385-420(1904).
[2] V. A. Markel. Introduction to the Maxwell Garnett approximation: tutorial. J. Opt. Soc. Am. A, 33, 1244-1256(2016).
[3] T. C. Choy. Effective Medium Theory(1999).
[4] K. Dolgaleva, R. W. Boyd. Local-field effects in nanostructured photonic materials. Adv. Opt. Photon., 4, 1-77(2012).
[5] W. Cai, V. Shalaev. Optical Metamaterials: Fundamentals and Applications(2009).
[6] P. A. Belov, R. Marqués, S. I. Maslovski, I. S. Nefedov, M. Silveirinha, C. R. Simovski, S. A. Tretyakov. Strong spatial dispersion in wire media in the very large wavelength limit. Phys. Rev. B, 67, 113103(2003).
[7] L. Shen, T. Yang, Y. Chau. 50/50 beam splitter using a one-dimensional metal photonic crystal with parabolalike dispersion. Appl. Phys. Lett., 90, 251909(2007).
[8] R. Pollard, A. Murphy, W. Hendren, P. Evans, R. Atkinson, G. Wurtz, A. Zayats, V. Podolskiy. Optical nonlocalities and additional waves in epsilon-near-zero metamaterials. Phys. Rev. Lett., 102, 127405(2009).
[9] C. R. Simovski, P. A. Belov, A. V. Atrashchenko, Y. S. Kivshar. Wire metamaterials: Physics and applications. Adv. Mater., 24, 4229-4248(2012).
[10] J. Luo, H. Chen, B. Hou, P. Xu, Y. Lai. Nonlocality-induced negative refraction and subwavelength imaging by parabolic dispersions in metal-dielectric multilayered structures with effective zero permittivity. Plasmonics, 8, 1095-1099(2013).
[11] R. L. Chern. Spatial dispersion and nonlocal effective permittivity for periodic layered metamaterials. Opt. Express, 21, 16514-16527(2013).
[12] M. G. Silveirinha. Nonlocal homogenization model for a periodic array of ϵ-negative rods. Phys. Rev. E, 73, 046612(2006).
[13] A. Alù. First-principles homogenization theory for periodic metamaterials. Phys. Rev. B, 84, 075153(2011).
[14] J. Luo, Y. Yang, Z. Yao, W. Lu, B. Hou, Z. H. Hang, C. T. Chan, Y. Lai. Ultratransparent media and transformation optics with shifted spatial dispersions. Phys. Rev. Lett., 117, 223901(2016).
[15] S. Li, Y. Wang, W. Zhang, W. Lu, B. Hou, J. Luo, Y. Lai. Observation of wide-angle impedance matching in terahertz photonic crystals. New J. Phys., 22, 023033(2020).
[16] H. H. Sheinfux, I. Kaminer, Y. Plotnik, G. Bartal, M. Segev. Subwavelength multilayer dielectrics: ultrasensitive transmission and breakdown of effective-medium theory. Phys. Rev. Lett., 113, 243901(2014).
[17] S. V. Zhukovsky, A. Andryieuski, O. Takayama, E. Shkondin, R. Malureanu, F. Jensen, A. V. Lavrinenko. Experimental demonstration of effective medium approximation breakdown in deeply subwavelength all-dielectric multilayers. Phys. Rev. Lett., 115, 177402(2015).
[18] A. Andryieuski, A. V. Lavrinenko, S. V. Zhukovsky. Anomalous effective medium approximation breakdown in deeply subwavelength all-dielectric photonic multilayers. Nanotechnology, 26, 184001(2015).
[19] H. H. Sheinfux, I. Kaminer, A. Z. Genack, M. Segev. Interplay between evanescence and disorder in deep subwavelength photonic structures. Nat. Commun., 7, 12927(2016).
[20] M. Coppolaro, G. Castaldi, V. Galdi. Effects of deterministic disorder at deeply subwavelength scales in multilayered dielectric metamaterials. Opt. Express, 28, 10199-10209(2020).
[21] D. V. Novitsky, A. S. Shalin, A. Novitsky. Nonlocal homogenization of PT-symmetric multilayered structures. Phys. Rev. A, 99, 043812(2019).
[22] M. A. Gorlach, M. Lapine. Boundary conditions for the effective-medium description of subwavelength multilayered structures. Phys. Rev. B, 101, 075127(2020).
[23] X. Lei, L. Mao, Y. Lu, P. Wang. Revisiting the effective medium approximation in all-dielectric subwavelength multilayers: breakdown and rebuilding. Phys. Rev. B, 96, 035439(2017).
[24] V. Popov, A. V. Lavrinenko, A. Novitsky. Operator approach to effective medium theory to overcome a breakdown of Maxwell Garnett approximation. Phys. Rev. B, 94, 085428(2016).
[25] A. Maurel, J. Marigo. Sensitivity of a dielectric layered structure on a scale below the periodicity: a local homogenized model. Phys. Rev. B, 98, 024306(2018).
[26] M. Coppolaro, G. Castaldi, V. Galdi. Anomalous light transport induced by deeply subwavelength quasiperiodicity in multilayered dielectric metamaterials. Phys. Rev. B, 102, 075107(2020).
[27] H. H. Sheinfux, Y. Lumer, G. Ankonina, A. Z. Genack, G. Bartal, M. Segev. Observation of Anderson localization in disordered nanophotonic structures. Science, 356, 953-956(2017).
[28] J. Luo, W. Lu, Z. Hang, H. Chen, B. Hou, Y. Lai, C. T. Chan. Arbitrary control of electromagnetic flux in inhomogeneous anisotropic media with near-zero index. Phys. Rev. Lett., 112, 073903(2014).
[29] D. J. Griffiths. Introduction to Electrodynamics(1999).
[30] J. Song, J. Luo, Y. Lai. Side scattering shadow and energy concentration effects of epsilon-near-zero media. Opt. Lett., 43, 1738-1741(2018).
[31] T. Dong, J. Luo, H. Chu, X. Xiong, Y. Lai. Breakdown of Maxwell Garnett theory due to evanescent fields at deep-subwavelength scale(2020).
[32] A. Capretti, Y. Wang, N. Engheta, L. D. Negro. Enhanced third-harmonic generation in Si-compatible epsilon-near-zero indium tin oxide nanolayers. Opt. Lett., 40, 1500-1503(2015).
[33] J. B. Pendry, A. I. Fernández-Domínguez, Y. Luo, R. Zhao. Capturing photons with transformation optics. Nat. Phys., 9, 518-522(2013).
[34] B. X. Wang, C. Y. Zhao. Near-resonant light transmission in two-dimensional dense cold atomic media with short-range positional correlations. J. Opt. Soc. Am. B, 37, 1757-1768(2020).
[35] R. Ruppin. Evaluation of extended Maxwell-Garnett theories. Opt. Commun., 182, 273-279(2000).
[36] S. Chui, L. Hu. Theoretical investigation on the possibility of preparing left-handed materials in metallic magnetic granular composites. Phys. Rev. B, 65, 144407(2002).
[37] Y. Wu, J. Li, Z. Q. Zhang, C. T. Chan. Effective medium theory for magnetodielectric composites: beyond the long-wavelength limit. Phys. Rev. B, 74, 085111(2006).
[38] N. C. Tansil, Z. Gao. Nanoparticles in biomolecular detection. Nano Today, 1, 28-37(2006).
[39] A. van Reenen, A. M. de Jong, J. M. den Toonder, M. W. Prins. Integrated lab-on-chip biosensing systems based on magnetic particle actuation–a comprehensive review. Lab Chip, 14, 1966-1986(2014).
Get Citation
Copy Citation Text
Ting Dong, Jie Luo, Hongchen Chu, Xiang Xiong, Ruwen Peng, Mu Wang, Yun Lai, "Breakdown of Maxwell Garnett theory due to evanescent fields at deep-subwavelength scale," Photonics Res. 9, 848 (2021)
Category: Physical Optics
Received: Sep. 2, 2020
Accepted: Mar. 8, 2021
Published Online: May. 7, 2021
The Author Email: Jie Luo (luojie@suda.edu.cn), Yun Lai (laiyun@nju.edu.cn)