Chinese Journal of Lasers, Volume. 50, Issue 17, 1714004(2023)

Terahertz Waves Transmission Modulation and Nonlinear Effects Based on Stimulated Phonon Polaritons

Xitan Xu1,2, Yibo Huang1,2, Yao Lu1,2, Ruobin Ma1,2, Qiang Wu1,2、*, and Jingjun Xu1,2
Author Affiliations
  • 1Key Laboratory of Weak-Light Nonlinear Photonics, Ministry of Education, TEDA Institute of Applied Physics and School of Physics, Nankai University, Tianjin 300457, China
  • 2Shenzhen Research Institute of Nankai University, Shenzhen 518083, Guangdong, China
  • show less
    References(56)

    [1] Li X, Qiu T, Zhang J H et al. Terahertz field-induced ferroelectricity in quantum paraelectric SrTiO3[J]. Science, 364, 1079-1082(2019).

    [2] Han P, Wang X K, Zhang Y. Time-resolved terahertz spectroscopy studies on 2D van der Waals materials[J]. Advanced Optical Materials, 8, 1900533(2020).

    [3] Liu Y, Liu H, Tang M Q et al. The medical application of terahertz technology in non-invasive detection of cells and tissues: opportunities and challenges[J]. RSC Advances, 9, 9354-9363(2019).

    [4] Neu J, Schmuttenmaer C A. Tutorial: an introduction to terahertz time domain spectroscopy (THz-TDS)[J]. Journal of Applied Physics, 124, 231101(2018).

    [5] Peng Y, Shi C J, Zhu Y M et al. Terahertz spectroscopy in biomedical field: a review on signal-to-noise ratio improvement[J]. PhotoniX, 1, 12(2020).

    [6] Siegel P H. Terahertz technology in biology and medicine[J]. IEEE Transactions on Microwave Theory and Techniques, 52, 2438-2447(2004).

    [7] Watts C M, Shrekenhamer D, Montoya J et al. Terahertz compressive imaging with metamaterial spatial light modulators[J]. Nature Photonics, 8, 605-609(2014).

    [8] Suzuki D, Oda S, Kawano Y. A flexible and wearable terahertz scanner[J]. Nature Photonics, 10, 809-813(2016).

    [9] Ma J J, Shrestha R, Adelberg J et al. Security and eavesdropping in terahertz wireless links[J]. Nature, 563, 89-93(2018).

    [10] Dang S P, Amin O, Shihada B et al. What should 6G be?[J]. Nature Electronics, 3, 20-29(2020).

    [11] Hafez H A, Kovalev S, Deinert J C et al. Extremely efficient terahertz high-harmonic generation in graphene by hot Dirac fermions[J]. Nature, 561, 507-511(2018).

    [12] Lee K, Son J, Park J et al. Linear frequency conversion via sudden merging of meta-atoms in time-variant metasurfaces[J]. Nature Photonics, 12, 765-773(2018).

    [13] Yang Y H, Yamagami Y, Yu X B et al. Terahertz topological photonics for on-chip communication[J]. Nature Photonics, 14, 446-451(2020).

    [14] Cong L Q, Singh R. Spatiotemporal dielectric metasurfaces for unidirectional propagation and reconfigurable steering of terahertz beams[J]. Advanced Materials, 32, 2001418(2020).

    [15] Xu S T, Fan F, Chen M et al. Terahertz polarization mode conversion in compound metasurface[J]. Applied Physics Letters, 111, 031107(2017).

    [16] Liu W Y, Yang Q L, Xu Q et al. Multifunctional all-dielectric metasurfaces for terahertz multiplexing[J]. Advanced Optical Materials, 9, 2100506(2021).

    [17] Cai X D, Tang R, Zhou H Y et al. Dynamically controlling terahertz wavefronts with cascaded metasurfaces[J]. Advanced Photonics, 3, 036003(2021).

    [18] Zeng H X, Liang H J, Zhang Y X et al. High-precision digital terahertz phase manipulation within a multichannel field perturbation coding chip[J]. Nature Photonics, 15, 751-757(2021).

    [19] Wu X J, Ren Z J, Kong D Y et al. Lithium niobate strong-field terahertz source and its applications[J]. Chinese Journal of Lasers, 49, 1914001(2022).

    [20] Khurgin J B. Nonlinear optics from the viewpoint of interaction time[J]. Nature Photonics, 17, 545-551(2023).

    [21] Lu Y, Wu Q, Xiong H et al. Light-matter interaction beyond Born-Oppenheimer approximation mediated by stimulated phonon polaritons[J]. Communications Physics, 5, 299(2022).

    [22] Born M, Huang K, Ge W K, Jia W Y[M]. Dynamical theory of crystal lattices(1989).

    [23] Gan Z Z. Progress in polaron research—in memory of Mr. Huang Kun’s 90th birthday[J]. Physics, 38, 581-591(2009).

    [24] Huang K. Lattice vibrations and optical waves in ionic crystals[J]. Nature, 167, 779-780(1951).

    [25] Huang K. On the interaction between the radiation field and ionic crystals[J]. Proceedings of the Royal Society of London Series A Mathematical and Physical Sciences, 208, 352-365(1951).

    [26] Lu Y, Zhang Q, Wu Q et al. Giant enhancement of THz-frequency optical nonlinearity by phonon polariton in ionic crystals[J]. Nature Communications, 12, 3183(2021).

    [27] Auston D H, Cheung K P, Valdmanis J A et al. Cherenkov radiation from femtosecond optical pulses in electro-optic media[J]. Physical Review Letters, 53, 1555-1558(1984).

    [28] Feurer T, Vaughan J C, Nelson K A. Spatiotemporal coherent control of lattice vibrational waves[J]. Science, 299, 374-377(2003).

    [29] Dougherty T P, Wiederrecht G P, Nelson K A. Impulsive stimulated Raman scattering experiments in the polariton regime[J]. Journal of the Optical Society of America B, 9, 2179-2189(1992).

    [30] Crimmins T F, Stoyanov N S, Nelson K A. Heterodyned impulsive stimulated Raman scattering of phonon-polaritons in LiTaO3 and LiNbO3[J]. The Journal of Chemical Physics, 117, 2882-2896(2002).

    [31] Stepanov A G, Bonacina L, Chekalin S V et al. Generation of 30 μJ single-cycle terahertz pulses at 100 Hz repetition rate by optical rectification[J]. Optics Letters, 33, 2497-2499(2008).

    [32] Fülöp J A, Pálfalvi L, Klingebiel S et al. Generation of sub-mJ terahertz pulses by optical rectification[J]. Optics Letters, 37, 557-559(2012).

    [33] Yang C L, Wu Q, Xu J J et al. Experimental and theoretical analysis of THz-frequency, direction-dependent, phonon polariton modes in a subwavelength, anisotropic slab waveguide[J]. Optics Express, 18, 26351-26364(2010).

    [34] Zhang Q, Wu Q, Zhang B et al. Terahertz integration and spatio-temporal super-resolution imaging on LiNbO3 chip[J]. Chinese Journal of Lasers, 46, 0508003(2019).

    [35] Dastrup B S, Sung E R, Wulf F et al. Enhancement of THz generation in LiNbO3 waveguides via multi-bounce velocity matching[J]. Light: Science & Applications, 11, 335(2022).

    [36] Hebling J, Almasi G, Kozma I Z et al. Velocity matching by pulse front tilting for large area THz-pulse generation[J]. Optics Express, 10, 1161-1166(2002).

    [37] Guiramand L, Nkeck J E, Ropagnol X et al. Near-optimal intense and powerful terahertz source by optical rectification in lithium niobate crystal[J]. Photonics Research, 10, 340-346(2022).

    [38] Wu X J, Kong D Y, Hao S B et al. Generation of 13.9-mJ terahertz radiation from lithium niobate materials[J]. Advanced Materials, 35, 2208947(2023).

    [39] Lin K H, Werley C A, Nelson K A. Generation of multicycle terahertz phonon-polariton waves in a planar waveguide by tilted optical pulse fronts[J]. Applied Physics Letters, 95, 103304(2009).

    [40] Yang H M, Qi J W, Pan C P et al. Efficient generation and frequency modulation of quasi-monochromatic terahertz wave in lithium niobate subwavelength waveguide[J]. Optics Express, 25, 14766-14773(2017).

    [41] Wu Q, Werley C A, Lin K H et al. Quantitative phase contrast imaging of THz electric fields in a dielectric waveguide[J]. Optics Express, 17, 9219-9225(2009).

    [42] Wu Q, Chen Q Q, Zhang B et al. Terahertz phonon polariton imaging[J]. Frontiers of Physics, 8, 217-227(2013).

    [43] Xiong H, Lu Y, Wu Q et al. Topological valley transport of terahertz phonon-polaritons in a LiNbO3 chip[J]. ACS Photonics, 8, 2737-2745(2021).

    [44] Dong J W, Chen X D, Zhu H Y et al. Valley photonic crystals for control of spin and topology[J]. Nature Materials, 16, 298-302(2017).

    [45] Zeng Y Q, Chattopadhyay U, Zhu B F et al. Electrically pumped topological laser with valley edge modes[J]. Nature, 578, 246-250(2020).

    [46] Kumar A, Gupta M, Pitchappa P et al. Phototunable chip-scale topological photonics: 160 Gbps waveguide and demultiplexer for THz 6G communication[J]. Nature Communications, 13, 5404(2022).

    [47] Sun S L, He Q, Xiao S Y et al. Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves[J]. Nature Materials, 11, 426-431(2012).

    [48] Li Z Y, Kim M H, Wang C et al. Controlling propagation and coupling of waveguide modes using phase-gradient metasurfaces[J]. Nature Nanotechnology, 12, 675-683(2017).

    [49] Wang R D, Wu Q, Cai W et al. Broadband on-chip terahertz asymmetric waveguiding via phase-gradient metasurface[J]. ACS Photonics, 6, 1774-1779(2019).

    [50] Wang R D, Wu Q, Zhang Q et al. Conversion from terahertz-guided waves to surface waves with metasurface[J]. Optics Express, 26, 31233-31243(2018).

    [51] Hecht E[M]. Optics(2017).

    [52] Feurer T, Stoyanov N S, Ward D W et al. Terahertz polaritonics[J]. Annual Review of Materials Research, 37, 317-350(2007).

    [53] Lu Y, Wu Q, Xiong H et al. Observation of “frozen-phase” propagation of THz pulses in a dispersive optical system[J]. Laser & Photonics Reviews, 15, 2000591(2021).

    [54] Born M, Oppenheimer R. Zur quantentheorie der molekeln[J]. Annalen Der Physik, 389, 457-484(1927).

    [55] Nicoletti D, Cavalleri A. Nonlinear light-matter interaction at terahertz frequencies[J]. Advances in Optics and Photonics, 8, 401-464(2016).

    [56] O’Brien K, Suchowski H, Rho J et al. Predicting nonlinear properties of metamaterials from the linear response[J]. Nature Materials, 14, 379-383(2015).

    Tools

    Get Citation

    Copy Citation Text

    Xitan Xu, Yibo Huang, Yao Lu, Ruobin Ma, Qiang Wu, Jingjun Xu. Terahertz Waves Transmission Modulation and Nonlinear Effects Based on Stimulated Phonon Polaritons[J]. Chinese Journal of Lasers, 2023, 50(17): 1714004

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: terahertz technology

    Received: Jun. 29, 2023

    Accepted: Aug. 18, 2023

    Published Online: Sep. 13, 2023

    The Author Email: Wu Qiang (wuqiang@nankai.edu.cn)

    DOI:10.3788/CJL230973

    Topics