Chinese Journal of Lasers, Volume. 50, Issue 17, 1714004(2023)
Terahertz Waves Transmission Modulation and Nonlinear Effects Based on Stimulated Phonon Polaritons
[1] Li X, Qiu T, Zhang J H et al. Terahertz field-induced ferroelectricity in quantum paraelectric SrTiO3[J]. Science, 364, 1079-1082(2019).
[2] Han P, Wang X K, Zhang Y. Time-resolved terahertz spectroscopy studies on 2D van der Waals materials[J]. Advanced Optical Materials, 8, 1900533(2020).
[3] Liu Y, Liu H, Tang M Q et al. The medical application of terahertz technology in non-invasive detection of cells and tissues: opportunities and challenges[J]. RSC Advances, 9, 9354-9363(2019).
[4] Neu J, Schmuttenmaer C A. Tutorial: an introduction to terahertz time domain spectroscopy (THz-TDS)[J]. Journal of Applied Physics, 124, 231101(2018).
[5] Peng Y, Shi C J, Zhu Y M et al. Terahertz spectroscopy in biomedical field: a review on signal-to-noise ratio improvement[J]. PhotoniX, 1, 12(2020).
[6] Siegel P H. Terahertz technology in biology and medicine[J]. IEEE Transactions on Microwave Theory and Techniques, 52, 2438-2447(2004).
[7] Watts C M, Shrekenhamer D, Montoya J et al. Terahertz compressive imaging with metamaterial spatial light modulators[J]. Nature Photonics, 8, 605-609(2014).
[8] Suzuki D, Oda S, Kawano Y. A flexible and wearable terahertz scanner[J]. Nature Photonics, 10, 809-813(2016).
[9] Ma J J, Shrestha R, Adelberg J et al. Security and eavesdropping in terahertz wireless links[J]. Nature, 563, 89-93(2018).
[10] Dang S P, Amin O, Shihada B et al. What should 6G be?[J]. Nature Electronics, 3, 20-29(2020).
[11] Hafez H A, Kovalev S, Deinert J C et al. Extremely efficient terahertz high-harmonic generation in graphene by hot Dirac fermions[J]. Nature, 561, 507-511(2018).
[12] Lee K, Son J, Park J et al. Linear frequency conversion via sudden merging of meta-atoms in time-variant metasurfaces[J]. Nature Photonics, 12, 765-773(2018).
[13] Yang Y H, Yamagami Y, Yu X B et al. Terahertz topological photonics for on-chip communication[J]. Nature Photonics, 14, 446-451(2020).
[14] Cong L Q, Singh R. Spatiotemporal dielectric metasurfaces for unidirectional propagation and reconfigurable steering of terahertz beams[J]. Advanced Materials, 32, 2001418(2020).
[15] Xu S T, Fan F, Chen M et al. Terahertz polarization mode conversion in compound metasurface[J]. Applied Physics Letters, 111, 031107(2017).
[16] Liu W Y, Yang Q L, Xu Q et al. Multifunctional all-dielectric metasurfaces for terahertz multiplexing[J]. Advanced Optical Materials, 9, 2100506(2021).
[17] Cai X D, Tang R, Zhou H Y et al. Dynamically controlling terahertz wavefronts with cascaded metasurfaces[J]. Advanced Photonics, 3, 036003(2021).
[18] Zeng H X, Liang H J, Zhang Y X et al. High-precision digital terahertz phase manipulation within a multichannel field perturbation coding chip[J]. Nature Photonics, 15, 751-757(2021).
[19] Wu X J, Ren Z J, Kong D Y et al. Lithium niobate strong-field terahertz source and its applications[J]. Chinese Journal of Lasers, 49, 1914001(2022).
[20] Khurgin J B. Nonlinear optics from the viewpoint of interaction time[J]. Nature Photonics, 17, 545-551(2023).
[21] Lu Y, Wu Q, Xiong H et al. Light-matter interaction beyond Born-Oppenheimer approximation mediated by stimulated phonon polaritons[J]. Communications Physics, 5, 299(2022).
[22] Born M, Huang K, Ge W K, Jia W Y[M]. Dynamical theory of crystal lattices(1989).
[23] Gan Z Z. Progress in polaron research—in memory of Mr. Huang Kun’s 90th birthday[J]. Physics, 38, 581-591(2009).
[24] Huang K. Lattice vibrations and optical waves in ionic crystals[J]. Nature, 167, 779-780(1951).
[25] Huang K. On the interaction between the radiation field and ionic crystals[J]. Proceedings of the Royal Society of London Series A Mathematical and Physical Sciences, 208, 352-365(1951).
[26] Lu Y, Zhang Q, Wu Q et al. Giant enhancement of THz-frequency optical nonlinearity by phonon polariton in ionic crystals[J]. Nature Communications, 12, 3183(2021).
[27] Auston D H, Cheung K P, Valdmanis J A et al. Cherenkov radiation from femtosecond optical pulses in electro-optic media[J]. Physical Review Letters, 53, 1555-1558(1984).
[28] Feurer T, Vaughan J C, Nelson K A. Spatiotemporal coherent control of lattice vibrational waves[J]. Science, 299, 374-377(2003).
[29] Dougherty T P, Wiederrecht G P, Nelson K A. Impulsive stimulated Raman scattering experiments in the polariton regime[J]. Journal of the Optical Society of America B, 9, 2179-2189(1992).
[30] Crimmins T F, Stoyanov N S, Nelson K A. Heterodyned impulsive stimulated Raman scattering of phonon-polaritons in LiTaO3 and LiNbO3[J]. The Journal of Chemical Physics, 117, 2882-2896(2002).
[31] Stepanov A G, Bonacina L, Chekalin S V et al. Generation of 30 μJ single-cycle terahertz pulses at 100 Hz repetition rate by optical rectification[J]. Optics Letters, 33, 2497-2499(2008).
[32] Fülöp J A, Pálfalvi L, Klingebiel S et al. Generation of sub-mJ terahertz pulses by optical rectification[J]. Optics Letters, 37, 557-559(2012).
[33] Yang C L, Wu Q, Xu J J et al. Experimental and theoretical analysis of THz-frequency, direction-dependent, phonon polariton modes in a subwavelength, anisotropic slab waveguide[J]. Optics Express, 18, 26351-26364(2010).
[34] Zhang Q, Wu Q, Zhang B et al. Terahertz integration and spatio-temporal super-resolution imaging on LiNbO3 chip[J]. Chinese Journal of Lasers, 46, 0508003(2019).
[35] Dastrup B S, Sung E R, Wulf F et al. Enhancement of THz generation in LiNbO3 waveguides via multi-bounce velocity matching[J]. Light: Science & Applications, 11, 335(2022).
[36] Hebling J, Almasi G, Kozma I Z et al. Velocity matching by pulse front tilting for large area THz-pulse generation[J]. Optics Express, 10, 1161-1166(2002).
[37] Guiramand L, Nkeck J E, Ropagnol X et al. Near-optimal intense and powerful terahertz source by optical rectification in lithium niobate crystal[J]. Photonics Research, 10, 340-346(2022).
[38] Wu X J, Kong D Y, Hao S B et al. Generation of 13.9-mJ terahertz radiation from lithium niobate materials[J]. Advanced Materials, 35, 2208947(2023).
[39] Lin K H, Werley C A, Nelson K A. Generation of multicycle terahertz phonon-polariton waves in a planar waveguide by tilted optical pulse fronts[J]. Applied Physics Letters, 95, 103304(2009).
[40] Yang H M, Qi J W, Pan C P et al. Efficient generation and frequency modulation of quasi-monochromatic terahertz wave in lithium niobate subwavelength waveguide[J]. Optics Express, 25, 14766-14773(2017).
[41] Wu Q, Werley C A, Lin K H et al. Quantitative phase contrast imaging of THz electric fields in a dielectric waveguide[J]. Optics Express, 17, 9219-9225(2009).
[42] Wu Q, Chen Q Q, Zhang B et al. Terahertz phonon polariton imaging[J]. Frontiers of Physics, 8, 217-227(2013).
[43] Xiong H, Lu Y, Wu Q et al. Topological valley transport of terahertz phonon-polaritons in a LiNbO3 chip[J]. ACS Photonics, 8, 2737-2745(2021).
[44] Dong J W, Chen X D, Zhu H Y et al. Valley photonic crystals for control of spin and topology[J]. Nature Materials, 16, 298-302(2017).
[45] Zeng Y Q, Chattopadhyay U, Zhu B F et al. Electrically pumped topological laser with valley edge modes[J]. Nature, 578, 246-250(2020).
[46] Kumar A, Gupta M, Pitchappa P et al. Phototunable chip-scale topological photonics: 160 Gbps waveguide and demultiplexer for THz 6G communication[J]. Nature Communications, 13, 5404(2022).
[47] Sun S L, He Q, Xiao S Y et al. Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves[J]. Nature Materials, 11, 426-431(2012).
[48] Li Z Y, Kim M H, Wang C et al. Controlling propagation and coupling of waveguide modes using phase-gradient metasurfaces[J]. Nature Nanotechnology, 12, 675-683(2017).
[49] Wang R D, Wu Q, Cai W et al. Broadband on-chip terahertz asymmetric waveguiding via phase-gradient metasurface[J]. ACS Photonics, 6, 1774-1779(2019).
[50] Wang R D, Wu Q, Zhang Q et al. Conversion from terahertz-guided waves to surface waves with metasurface[J]. Optics Express, 26, 31233-31243(2018).
[51] Hecht E[M]. Optics(2017).
[52] Feurer T, Stoyanov N S, Ward D W et al. Terahertz polaritonics[J]. Annual Review of Materials Research, 37, 317-350(2007).
[53] Lu Y, Wu Q, Xiong H et al. Observation of “frozen-phase” propagation of THz pulses in a dispersive optical system[J]. Laser & Photonics Reviews, 15, 2000591(2021).
[54] Born M, Oppenheimer R. Zur quantentheorie der molekeln[J]. Annalen Der Physik, 389, 457-484(1927).
[55] Nicoletti D, Cavalleri A. Nonlinear light-matter interaction at terahertz frequencies[J]. Advances in Optics and Photonics, 8, 401-464(2016).
[56] O’Brien K, Suchowski H, Rho J et al. Predicting nonlinear properties of metamaterials from the linear response[J]. Nature Materials, 14, 379-383(2015).
Get Citation
Copy Citation Text
Xitan Xu, Yibo Huang, Yao Lu, Ruobin Ma, Qiang Wu, Jingjun Xu. Terahertz Waves Transmission Modulation and Nonlinear Effects Based on Stimulated Phonon Polaritons[J]. Chinese Journal of Lasers, 2023, 50(17): 1714004
Category: terahertz technology
Received: Jun. 29, 2023
Accepted: Aug. 18, 2023
Published Online: Sep. 13, 2023
The Author Email: Wu Qiang (wuqiang@nankai.edu.cn)