Laser & Optoelectronics Progress, Volume. 59, Issue 12, 1215018(2022)

Design and Implementation of Multimodel Estimation Algorithm for Nonrigid Matching Images

Ruoyan Wei1、*, Siyuan Huo1, and Xiaoqing Zhu2
Author Affiliations
  • 1College of Information Technology, Hebei University of Economics and Business, Shijiazhuang 050061, Hebei , China
  • 2Faculty of Information Technology, Beijing University of Technology, Beijing 100124, China
  • show less
    Figures & Tables(19)
    Image matching at distance ratio threshold of 0.8[27]. (a) 1m2; (b) 1m3; (c) 1m4; (d) 1m5
    Histograms of distance ratio of matching images. (a) 1m2; (b) 1m3; (c) 1m4; (d) 1m5
    Distribution of inliers and outliers in the matched images with zoom change[28]. (a) Correct matched pairs; (b) distribution of inliers and outliers (red points are outliers, yellow points are inliers)
    Secondary removal of outliers[29]. (a) Matched pairs obtained by existing method; (b) vectors of position change between inliers, and the included outliers
    Flow chart of the proposed method
    Schematic of conscient distribution of neighbor points
    Algorithm of inlier ratio promotion based on near neighbor inlier distribution consensus
    Histograms of inlier distance errors. (a) Boston; (b) BruggeTower; (c) ExtremeZoom; (d) Graf; (e) Effel
    Multi-model estimation algorithm based on distance error marginalization
    Vector of position change between inliers. (a) Leafs[28]; (b) Toy and Bread[29]; (c) Booksh[28]; (d) ExtremeZoom[28]
    Schematic of image gridding and local area with its neighbor areas
    Secondary removal algorithm of outlier
    Experimental results on homogr dataset. (a) Inlier ratio of different image pairs; (b) inlier ratio after outlier filtering out; (c) recall of inliers; (d) original number of matched pairs; (e) number of matched pairs after outlier filtering out
    Inlier distance error obtained by different methods
    Comparison of average performance of different algorithms on different criteria. (a) Undetected outlier ratio; (b) number of inliers; (c) consumption time
    Multi-plane estimation obtained by the proposed method under Adelaidermf data set. (a) ladysymon; (b) neem; (c) nese; (d) johnsona; (e) elderhallb; (f) unihouse; (g) bonhall; (h) napiera; (i) oldclassicswing; (j) library
    • Table 1. Information of image pairs

      View table

      Table 1. Information of image pairs

      ParameterIndoorOutdoor
      Wash

      Scene

      0722

      Scene

      0758

      Scene

      0726

      Toys and BreadsGrafScared HeartSaint Peter’s BasilicaKremlinPotala
      Size/(pixel×pixel)768×5761296×9681296×9681296×968480×640800×6401065×693/1039×6871039×688/1032×771800×500/800×5411023×682/1400×808
      Number of correspondences81331972909930117212331292144017292280
    • Table 2. Comparison results

      View table

      Table 2. Comparison results

      ImageIndicatorRANSACPROSACNAPSACP-NAPSACSC-RANSACAdalamOANETSuperGlueProposed method
      Washnoi14247173467416364
      nor532526033
      t /s0.630.1280.440.2160.2230.260.3210.1760.135

      Scene

      0722

      noi5841627107692123
      nor5412404821
      t /s0.570.970.2880.350.920.6710.770.610.56

      Scene

      0758

      noi759832585912195127
      nor4636716852
      t /s0.780.490.620.730.750.640.760.520.63

      Scene

      0726

      noi8631019161203847
      nor1131306020
      t /s0.930.1830.4190.2990.3140.3010.3510.2330.213
      Toys and Breadsnoi18918488142193451275439460
      nor2473515941
      t /s0.530.1650.420.360.390.430.4110.3080.253
      Grafnoi82872960436910483
      nor81351661331
      t /s0.620.210.3920.4110.430.370.4580.4190.352
      Scared Heartnoi157755185112205135185
      nor25581335543
      t /s0.610.2110.3560.4120.390.3830.4160.2940.314
      Saint Peter’s Basilicanoi7125357347105100116
      nor0956502032
      t /s0.710.2910.6520.4890.5210.4770.5030.3910.401
      Kremlinnoi8149284015574645
      nor087360781
      t /s0.710.3410.4820.5320.5910.520.5210.5870.512
      Potalanoi78612116765156
      nor224480811
      t /s0.80.2610.6110.5420.6650.6510.6390.5790.599
    • Table 3. Plane error rate of different methods

      View table

      Table 3. Plane error rate of different methods

      ImageNumber of planesPEARLMulti-XMulti-HCONSACMCTSequential RANSACProposed
      ladysymon28.915.314.492.953.803.801.43
      neem34.210.000.002.7414.4414.441.88
      nese25.330.000.000.0012.830.470.83
      johnsona29.213.752.4714.4818.7728.043.7
      elderhallb510.336.455.3111.6920.3118.675.28
      unihouse59.916.397.218.8410.6910.692.99
      bonhall615.637.918.2216.9329.2920.438.19
      napiera311.993.123.442.7221.3211.662.53
      oldclassicswing26.110.000.001.6915.21.320.02
      library36.710.961.431.2114.7911.350.66
      Mean8.8343.3893.2576.32516.14412.092.72
      Average standard deviation2.562.572.485.335.026.651.83
    Tools

    Get Citation

    Copy Citation Text

    Ruoyan Wei, Siyuan Huo, Xiaoqing Zhu. Design and Implementation of Multimodel Estimation Algorithm for Nonrigid Matching Images[J]. Laser & Optoelectronics Progress, 2022, 59(12): 1215018

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Machine Vision

    Received: Aug. 13, 2021

    Accepted: Oct. 19, 2021

    Published Online: May. 23, 2022

    The Author Email: Ruoyan Wei (weiruoyan1984@163.com)

    DOI:10.3788/LOP202259.1215018

    Topics