Journal of Quantum Optics, Volume. 30, Issue 2, 20003(2024)

Quantum Error Correction of Squeezed States Transmitted over Optical Fiber Channel

KANG Guo-hui1, FENG Jin-xia1,2、*, LI Yuan-ji1,2, and ZHANG Kuan-shou1,2
Author Affiliations
  • 1State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Opto-Electronics, Shanxi University, Taiyuan 030006, China
  • 2Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
  • show less
    References(24)

    [1] [1] XIA X X, SUN Q C, ZHANG Q, et al. Long distance quantum teleportation[J]. Quantum Sci Technol, 2018, 3:014012. DOI: 10.1088/2058-9565/aa9baf.

    [2] [2] BREMER L, RODT S, REITZENSTEIN S. Fiber-coupled quantum light sources based on solid-state quantum emitters[J]. Mater Quantum Technol, 2022, 2:042002. DOI: 10.1088/2633-4356/aca3f3.

    [3] [3] WANG S Y, HUANG P, WANG T, et al. Atmospheric effects on continuous-variable quantum key distribution[J]. New J Phys, 2018, 20:083037. DOI: 10.1088/1367-2630/aad9c4.

    [4] [4] RIEDMATTEN H, MARCIKIC I, TITTEL W, et al. Long distance quantum teleportation in a quantum relay configuration[J]. Phys Rev Lett, 2004, 30:92(4):047904. DOI: 10.1103/PhysRevLett.92.047904.

    [5] [5] FENG J X, WAN Z J, LI Y J, et al. Distribution of continuous variable quantum entanglement at a telecommunication wavelength over 20 km of optical fiber[J]. Opt Lett, 2017, 42:3399‒3402. DOI: 10.1364/OL.42.003399.

    [6] [6] HUO M R, QIN J L, CHENG J L, et al. Deterministic quantum teleportation through fiber channels[J]. Sci Adv, 2018, 4:eaas9401. DOI: 10.1126/sciadv.aas9401.

    [7] [7] BEUG J C, LAUDE V. Electrostriction and guidance of acoustic phonons in optical fibers[J]. Phy Rev B, 2012, 86:224304. DOI: 10.1103/physrevb.86.224304.

    [8] [8] FLAMINI F, SPAGNOLO N, SCIARRINO F. Photonic quantum information processing: a review[J]. Rep Prog Phys, 2019, 82:016001. DOI: 10.1088/1361-6633/aad5b2.

    [9] [9] STOLEN R H, IPPEN E P. Raman gain in glass optical waveguides[J]. Appl Phys Lett, 1973, 22(6):276‒278. DOI: 10.1063/1.1654637.

    [10] [10] QIN J L, CHENG J L, LIANG S C, et al. Transferring of continuous variable squeezed states in 20 km fiber[J]. Appl Sci 2019, 9:2397. DOI: https://doi.org/10.3390/app9122397.

    [11] [11] ZHU Y H, GRANADO E C, CALDERON O G. Competition between the modulation instability and stimulated Brillouin scattering in a broadband slow light device[J]. Journal of Optics, 2010, 12:104019. DOI: 10.1088/2040-8978/12/10/104019.

    [12] [12] HAYASHI N, MIZUNO Y, NAKAMURA K, et al. Experimental observation of spontaneous depeolarized guided acoustic-wave Brillouin scattering in side cores of a multicore fiber[J]. Appl Phys Express, 2018, 11:062502. DOI: 10.7567/APEX.11.062502.

    [13] [13] DING Y H, BACCO D, DALGAARD K, et al. High-dimensional quantum key distribution based on multicore fiber using silicon photonic integrated circuits[J]. npj Quantum Information, 2016, 17:25. DOI: 10.1038/s41534-017-0026-2.

    [14] [14] KISELEV F, VESELKOVA N, GONCHAROV R, et al. A theoretical study of subcarrier-wave quantum key distribution system integration with an optical transport network utilizing dense wavelength division multiplexing[J]. J Phys B, 2021, 54:135502. DOI: 10.1088/1361-6455/ac076a.

    [15] [15] AOKI T, TAKAHASHI G, KAJIYA T, et al. Quantum error correction beyond qubits[J]. Nature Phys, 2009, 5:541‒546. DOI: 10.1038/NPHYS1309.

    [16] [16] SABUNCU M, FILIP R, LEUCHS G, et al. Environment-assisted quantum-information correction for continuous variables[J]. Phys Rev A, 2010, 81:012325. DOI: 10.1103/PHYSREVA.81.012325.

    [17] [17] RALPH T C. Quantum error correction of continuous-variable states against Gaussian noise[J]. Phys Rev A, 2011, 84:022339. DOI: 10.1103/PHYSREVA.84.022339.

    [18] [18] LASSEN M, BERNI A, MADSEN S, et al. Gaussian error correction of quantum states in a correlated noisy channel[J]. Phys Rev Lett, 2013, 111:180502. DOI: 10.1103/PhysRevLett.111.180502.

    [19] [19] DENG X W, SU X L, XIE C D, et al. Disappearance and revival of squeezing in quantum communication with squeezed state over a noisy channel[J]. Appl Phys Lett, 2016, 108:08110. DOI 10.1063/1.4942464.

    [20] [20] FENG Q, LI W, WANG J, et al. Investigations of backscattering effects in optical fibers and their influences on the link monitoring[J]. IEEE Photonics, 2017, 9:1‒9. DOI: 10.1109/jphot.2017.2682847.

    [21] [21] DIAS J, RALPP T C. Quantum error-correction of continuous-variable states with realistic resources[J]. Physical Review A, 2017, 97:032335. DOI: 10.1103/PhysRevA.97.032335.

    [22] [22] TSERKIS S, DIAS J. Simulation of Gaussian channels via teleportation and error correction of Gaussian states[J]. Physical Review A, 2018, 98:052335. DOI: 10.1103/PhysRevA.98.052335.

    [23] [23] FUKUI K, ALEXANDER R N, LOOCK P V, et al. All-optical long-distance quantum communication with Gottesman-Kitaev-Preskill qubits[J]. Physical Review A, 2021, 3:033118. DOI: 10.1103/PhysRevResearch.3.033118.

    [24] [24] XU J S, YUNG M H, XU X Y, et al. Robust bidirectional links for photonic quantum networks[J]. Sci Adv, 2016, 2:(1)e1500672. DOI: 10.1126/sciadv.1500672.

    Tools

    Get Citation

    Copy Citation Text

    KANG Guo-hui, FENG Jin-xia, LI Yuan-ji, ZHANG Kuan-shou. Quantum Error Correction of Squeezed States Transmitted over Optical Fiber Channel[J]. Journal of Quantum Optics, 2024, 30(2): 20003

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Jan. 30, 2023

    Accepted: Dec. 26, 2024

    Published Online: Dec. 25, 2024

    The Author Email: FENG Jin-xia (fengjx@sxu.edu.cn)

    DOI:10.3788/jqo20243002.0303

    Topics