Laser & Optoelectronics Progress, Volume. 56, Issue 2, 021003(2019)

Feature Extraction of Hyperspectral Images Based on Semi-Supervised Locality Preserving Projection with Spatial-Correlation

Dongmei Huang1,2, Xiaotong Zhang1, Minghua Zhang1、*, Wei Song1, and Yan Wang1
Author Affiliations
  • 1 College of Information Technology, Shanghai Ocean University, Shanghai 201306, China
  • 2 Shanghai University of Electric Power, Shanghai 200090, China
  • show less
    Figures & Tables(9)
    Diagram of the neighborhood relationship between space and pixel of objects
    Hyperspectral image and ground truth data of Indian Pines
    Hyperspectral image and ground truth data of Pavia University
    Overall classification accuracy of different labels in Indian Pines dataset with different algorithms. (a) 10 labels; (b) 20 labels; (c) 30 labels
    Overall classification accuracy of different labels in Pavia University dataset with different algorithms. (a) 10 labels; (b) 20 labels; (c) 30 labels
    • Table 1. Highest overall classification accuracy of different labels in Indian Pines dataset with different algorithms (average±standard variance /%)

      View table

      Table 1. Highest overall classification accuracy of different labels in Indian Pines dataset with different algorithms (average±standard variance /%)

      AlgorithmHighest overall classification accuracy
      10 labels20 labels30 labels
      1-NNSVM1-NNSVM1-NNSVM
      PCA72.81±0.5975.02±1.4374.03±0.2775.94±0.8275.04±0.5176.59±1.38
      LPP73.29±0.2076.96±0.7875.76±0.1477.51±1.0576.17±0.4478.89±0.67
      LSDA74.69±2.6778.20±3.6976.61±1.9280.92±1.9077.96±2.8481.15±2.17
      NPE74.21±2.2073.21±2.6975.84±1.2575.16±1.2777.06±2.1678.45±1.75
      SSLPP75.89±1.5477.25±1.5477.70±1.4781.38±1.5978.68±1.9582.09±0.70
      SSDR-PCP78.59±0.5079.67±0.6279.89±0.3980.89±0.7380.30±0.6382.46±0.78
      LPP-SCSSFE82.48±0.7484.62±0.7883.40±0.4286.48±0.6783.95±0.5987.50±0.37
    • Table 2. Classification accuracies of different types of samples in Indian Pines dataset with different algorithms

      View table

      Table 2. Classification accuracies of different types of samples in Indian Pines dataset with different algorithms

      ClassClassification accuracy /%
      PCALPPLSDANPESSLPPSSDR-PCPLPP-SCSSFE
      168.1763.8864.8460.9375.3976.9473.46
      263.0061.3865.6366.2562.8862.2566.75
      385.0783.4064.4680.5784.2685.3591.39
      489.2988.2990.8688.8693.0093.8694.86
      597.1196.3395.4297.75100.0098.88100.00
      666.9167.0968.9768.2072.8274.7670.48
      774.7274.1977.0777.3777.7479.5781.28
      852.6653.1167.0062.2756.0955.1268.74
      990.3190.9694.3795.9590.6591.0197.67
      1052.5851.1265.9660.2862.5161.1268.54
      OA75.0476.1777.9677.0678.6880.3083.95
      AA73.9872.9875.4675.8477.5377.8981.32
      κ72.3872.6572.5075.3574.2276.7080.99
    • Table 3. Highest overall classification accuracy of different labels in Pavia University dataset with different algorithms (average±standard variance /%)

      View table

      Table 3. Highest overall classification accuracy of different labels in Pavia University dataset with different algorithms (average±standard variance /%)

      AlgorithmHighest overall classification accuracy
      10 labels20 labels30 labels
      1-NNSVM1-NNSVM1-NNSVM
      PCA75.36±0.0975.83±1.4976.03±0.4375.32±1.5576.62±0.1776.37±2.99
      LPP78.19±1.0878.22±0.4878.36±0.3178.51±1.1779.40±0.9979.47±0.48
      LSDA79.90±2.5581.36±2.9781.07±2.4883.72±2.4281.85±2.1484.44±2.15
      NPE78.96±2.0378.92±2.0879.18±2.4379.37±2.8279.92±1.7281.00±3.05
      SSLPP80.68±0.4281.22±0.4282.26±0.4383.67±0.6082.57±0.4084.29±0.23
      SSDR-PCP83.96±0.3983.18±0.8484.99±0.3184.23±0.9686.61±0.1285.38±1.28
      LPP-SCSSFE87.84±0.7288.11±0.4789.10±0.6590.04±0.1289.57±0.4091.29±0.23
    • Table 4. Classification accuracies of different types of samples in Pavia University dataset with different algorithms

      View table

      Table 4. Classification accuracies of different types of samples in Pavia University dataset with different algorithms

      ClassClassification accuracy /%
      PCALPPLSDANPESSLPPSSDR-PCPLPP-SCSSFE
      181.9185.3475.0574.2083.6485.6786.47
      292.6193.6489.9286.1795.7995.7496.65
      371.4470.6165.2064.6272.9372.6782.34
      484.2886.2694.0394.1391.8391.2993.38
      599.5499.3599.7099.3999.7799.5499.85
      659.9969.1565.7164.4172.3572.3178.44
      786.5785.3185.7780.4686.5485.0090.75
      870.3172.6868.3773.6376.9772.9278.77
      998.0098.0098.8998.6797.2497.3898.91
      OA76.6279.4081.8579.9282.5786.6189.57
      AA74.4776.0874.2673.5777.7177.2580.56
      κ73.7376.6378.4876.6178.9683.0186.70
    Tools

    Get Citation

    Copy Citation Text

    Dongmei Huang, Xiaotong Zhang, Minghua Zhang, Wei Song, Yan Wang. Feature Extraction of Hyperspectral Images Based on Semi-Supervised Locality Preserving Projection with Spatial-Correlation[J]. Laser & Optoelectronics Progress, 2019, 56(2): 021003

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Image Processing

    Received: May. 21, 2018

    Accepted: Jul. 30, 2018

    Published Online: Aug. 1, 2019

    The Author Email: Zhang Minghua (mhzhang@shou.edu.cn)

    DOI:10.3788/LOP56.021003

    Topics