Acta Optica Sinica, Volume. 44, Issue 10, 1026014(2024)

Progress of Scanning Near-Field Optical Microscopy (Invited)

Yuxin Chen and Zhiyuan Li*
Author Affiliations
  • School of Physics and Optoelectronics, South China University of Technology, Guangzhou 510641, Guangdong, China
  • show less
    References(106)

    [1] Abbe E. Beiträge zur Theorie des Mikroskops und der mikroskopischen Wahrnehmung[J]. Archiv Für Mikroskopische Anatomie, 9, 413-468(1873).

    [2] Sahin F E. Revisiting a classic lens design problem[J]. Optik, 205, 164235(2020).

    [3] Wu J M, Guo Y D, Deng C et al. An integrated imaging sensor for aberration-corrected 3D photography[J]. Nature, 612, 62-71(2022).

    [4] Aieta F, Kats M A, Genevet P et al. Multiwavelength achromatic metasurfaces by dispersive phase compensation[J]. Science, 347, 1342-1345(2015).

    [5] Zang W B, Yuan Q, Chen R et al. Chromatic dispersion manipulation based on metalenses[J]. Advanced Materials, 32, e1904935(2020).

    [6] Binnig G, Rohrer H. Scanning tunneling microscopy[J]. Surface Science, 126, 236-244(1983).

    [7] Eigler D M, Schweizer E K. Positioning single atoms with a scanning tunnelling microscope[J]. Nature, 344, 524-526(1990).

    [8] Repp J, Meyer G, Stojković S M et al. Molecules on insulating films: scanning-tunneling microscopy imaging of individual molecular orbitals[J]. Physical Review Letters, 94, 026803(2005).

    [9] Lee J, Perdue S M, Rodriguez Perez A et al. Vibronic motion with joint angstrom-femtosecond resolution observed through Fano progressions recorded within one molecule[J]. ACS Nano, 8, 54-63(2014).

    [10] Binnig G, Quate C F, Gerber C. Atomic force microscope[J]. Physical Review Letters, 56, 930-933(1986).

    [11] Gross L, Mohn F, Moll N et al. The chemical structure of a molecule resolved by atomic force microscopy[J]. Science, 325, 1110-1114(2009).

    [12] Fatayer S, Albrecht F, Zhang Y L et al. Molecular structure elucidation with charge-state control[J]. Science, 365, 142-145(2019).

    [13] Ma R Z, Cao D Y, Zhu C Q et al. Atomic imaging of the edge structure and growth of a two-dimensional hexagonal ice[J]. Nature, 577, 60-63(2020).

    [14] Pohl D W, Denk W, Lanz M. Optical stethoscopy: Image recording with resolution λ/20[J]. Applied Physics Letters, 44, 651-653(1984).

    [15] Hell S W, Wichmann J. Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy[J]. Optics Letters, 19, 780-782(1994).

    [16] Betzig E. Proposed method for molecular optical imaging[J]. Optics Letters, 20, 237-239(1995).

    [17] Moerner W E, Kador L. Optical detection and spectroscopy of single molecules in a solid[J]. Physical Review Letters, 62, 2535-2538(1989).

    [18] Betzig E, Patterson G H, Sougrat R et al. Imaging intracellular fluorescent proteins at nanometer resolution[J]. Science, 313, 1642-1645(2006).

    [19] Liu T L, Upadhyayula S, Milkie D E et al. Observing the cell in its native state: Imaging subcellular dynamics in multicellular organisms[J]. Science, 360, eaaq1392(2018).

    [20] Gao R X, Asano S M, Upadhyayula S et al. Cortical column and whole-brain imaging with molecular contrast and nanoscale resolution[J]. Science, 363, eaau8302(2019).

    [21] Lelek M, Gyparaki M T, Beliu G et al. Single-molecule localization microscopy[J]. Nature Reviews Methods Primers, 1, 39(2021).

    [22] Veerman J A, Otter A M, Kuipers L et al. High definition aperture probes for near-field optical microscopy fabricated by focused ion beam milling[J]. Applied Physics Letters, 72, 3115-3117(1998).

    [23] Zenhausern F, Martin Y, Wickramasinghe H K. Scanning interferometric apertureless microscopy: optical imaging at 10 angstrom resolution[J]. Science, 269, 1083-1085(1995).

    [24] Li J F, Mu J J, Wang B L et al. Direct laser writing of symmetry-broken spiral tapers for polarization-insensitive three-dimensional plasmonic focusing[J]. Laser & Photonics Reviews, 8, 602-609(2014).

    [25] Long L, Deng Q R, Huang R T et al. 3D printing of plasmonic nanofocusing tip enabling high resolution, high throughput and high contrast optical near-field imaging[J]. Light, Science & Applications, 12, 219(2023).

    [26] Synge E H. A suggested method for extending microscopic resolution into the ultra-microscopic region[J]. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 6, 356-362(1928).

    [27] Betzig E, Lewis A, Harootunian A et al. Near field scanning optical microscopy (NSOM): development and biophysical applications[J]. Biophysical Journal, 49, 269-279(1986).

    [28] Betzig E, Trautman J K. Near-field optics: microscopy, spectroscopy, and surface modification beyond the diffraction limit[J]. Science, 257, 189-195(1992).

    [29] Betzig E, Isaacson M, Lewis A. Collection mode near-field scanning optical microscopy[J]. Applied Physics Letters, 51, 2088-2090(1987).

    [30] Betzig E, Trautman J K, Harris T D et al. Breaking the diffraction barrier: optical microscopy on a nanometric scale[J]. Science, 251, 1468-1470(1991).

    [31] Schnell M, García-Etxarri A, Huber A J et al. Controlling the near-field oscillations of loaded plasmonic nanoantennas[J]. Nature Photonics, 3, 287-291(2009).

    [32] Rang M, Jones A C, Zhou F et al. Optical near-field mapping of plasmonic nanoprisms[J]. Nano Letters, 8, 3357-3363(2008).

    [33] O’Callahan B T, Crampton K T, Novikova I V et al. Imaging nanoscale heterogeneity in ultrathin biomimetic and biological crystals[J]. The Journal of Physical Chemistry C, 122, 24891-24895(2018).

    [34] Park K D, Raschke M B. Polarization control with plasmonic antenna tips: a universal approach to optical nanocrystallography and vector-field imaging[J]. Nano Letters, 18, 2912-2917(2018).

    [35] Stöckle R M, Suh Y D, Deckert V et al. Nanoscale chemical analysis by tip-enhanced Raman spectroscopy[J]. Chemical Physics Letters, 318, 131-136(2000).

    [36] Anderson M S. Locally enhanced Raman spectroscopy with an atomic force microscope[J]. Applied Physics Letters, 76, 3130-3132(2000).

    [37] Hayazawa N, Inouye Y, Sekkat Z et al. Metallized tip amplification of near-field Raman scattering[J]. Optics Communications, 183, 333-336(2000).

    [38] Zhang R, Zhang Y, Dong Z C et al. Chemical mapping of a single molecule by plasmon-enhanced Raman scattering[J]. Nature, 498, 82-86(2013).

    [39] Jiang S, Zhang Y, Zhang R et al. Distinguishing adjacent molecules on a surface using plasmon-enhanced Raman scattering[J]. Nature Nanotechnology, 10, 865-869(2015).

    [40] Zhang Y, Luo Y, Zhang Y et al. Visualizing coherent intermolecular dipole-dipole coupling in real space[J]. Nature, 531, 623-627(2016).

    [41] Bethe H A. Theory of diffraction by small holes[J]. Physical Review, 66, 163-182(1944).

    [42] Heinzelmann H, Pohl D W. Scanning near-field optical microscopy[J]. Applied Physics A, 59, 89-101(1994).

    [43] La Rosa A H, Yakobson B I, Hallen H D. Origins and effects of thermal processes on near-field optical probes[J]. Applied Physics Letters, 67, 2597-2599(1995).

    [44] Ambrosio A, Fenwick O, Cacialli F et al. Shape dependent thermal effects in apertured fiber probes for scanning near-field optical microscopy[J]. Journal of Applied Physics, 99, 084303(2006).

    [45] Lee H, Lee D Y, Kang M G et al. Tip-enhanced photoluminescence nano-spectroscopy and nano-imaging[J]. Nanophotonics, 9, 3089-3110(2020).

    [46] Adiga V P, Kolb P W, Evans G T et al. Development of high-throughput, polarization-maintaining, near-field probes[J]. Applied Optics, 45, 2597-2600(2006).

    [47] Biehler B, La Rosa A H. High frequency-bandwidth optical technique to measure thermal elongation time responses of near-field scanning optical microscopy probes[J]. Review of Scientific Instruments, 73, 3837-3840(2002).

    [48] Helczynski L, Anderson D, Hall B et al. Chirp-induced splitting of pulses in optical fibers[J]. Journal of the Optical Society of America B, 19, 448-453(2002).

    [49] Namboodiri M, Khan T, Karki K et al. Nonlinear spectroscopy in the near-field: time resolved spectroscopy and subwavelength resolution non-invasive imaging[J]. Nanophotonics, 3, 61-73(2014).

    [50] Ding W, Andrews S R, Maier S A. Internal excitation and superfocusing of surface plasmon polaritons on a silver-coated optical fiber tip[J]. Physical Review A, 75, 063822(2007).

    [51] Ropers C, Neacsu C C, Elsaesser T et al. Grating-coupling of surface plasmons onto metallic tips: a nanoconfined light source[J]. Nano Letters, 7, 2784-2788(2007).

    [52] Wang Y, Srituravanich W, Sun C et al. Plasmonic nearfield scanning probe with high transmission[J]. Nano Letters, 8, 3041-3045(2008).

    [53] Lindquist N C, Nagpal P, Lesuffleur A et al. Three-dimensional plasmonic nanofocusing[J]. Nano Letters, 10, 1369-1373(2010).

    [54] Jiang R H, Chen C, Lin D Z et al. Near-field plasmonic probe with super resolution and high throughput and signal-to-noise ratio[J]. Nano Letters, 18, 881-885(2018).

    [55] Lu F F, Zhang W D, Zhang L et al. Nanofocusing of surface plasmon polaritons on metal-coated fiber tip under internal excitation of radial vector beam[J]. Plasmonics, 14, 1593-1599(2019).

    [56] Kim S, Yu N, Ma X Z et al. High external-efficiency nanofocusing for lens-free near-field optical nanoscopy[J]. Nature Photonics, 13, 636-643(2019).

    [57] Wang F, Yang S M, Li S B et al. High resolution and high signal-to-noise ratio imaging with near-field high-order optical signals[J]. Nano Research, 15, 8345-8350(2022).

    [58] Wang F, Li S B, Zhao S H et al. A flat-based plasmonic fiber probe for nanoimaging[J]. Nano Research, 16, 7545-7549(2023).

    [59] Kawata S, Sun H B, Tanaka T et al. Finer features for functional microdevices[J]. Nature, 412, 697-698(2001).

    [60] Gansel J K, Thiel M, Rill M S et al. Gold helix photonic metamaterial as broadband circular polarizer[J]. Science, 325, 1513-1515(2009).

    [61] Gan Z S, Cao Y Y, Evans R A et al. Three-dimensional deep sub-diffraction optical beam lithography with 9 nm feature size[J]. Nature Communications, 4, 2061(2013).

    [62] Mu J J, Liu Z G, Li J F et al. Direct laser writing of pyramidal plasmonic structures with apertures and asymmetric gratings towards efficient subwavelength light focusing[J]. Optics Express, 23, 22564-22571(2015).

    [63] Xu Y F, Wu Y Z, Cai J Y. The application of scanning near-field optical microscopy in the field of biology[J]. Laser & Optoelectronics Progress, 43, 51-55(2006).

    [64] Hu X T, Zhou L, Wu X et al. Review on near-field detection technology in the biomedical field[J]. Advanced Photonics Nexus, 2, 044002(2023).

    [65] Cernescu A, Szuwarzyński M, Kwolek U et al. Label-free infrared spectroscopy and imaging of single phospholipid bilayers with nanoscale resolution[J]. Analytical Chemistry, 90, 10179-10186(2018).

    [66] Ajaezi G C, Eisele M, Contu F et al. Near-field infrared nanospectroscopy and super-resolution fluorescence microscopy enable complementary nanoscale analyses of lymphocyte nuclei[J]. The Analyst, 143, 5926-5934(2018).

    [67] Gamage S, Howard M, Makita H et al. Probing structural changes in single enveloped virus particles using nano-infrared spectroscopic imaging[J]. PLoS One, 13, e0199112(2018).

    [68] Mester L, Govyadinov A A, Hillenbrand R. High-fidelity nano-FTIR spectroscopy by on-pixel normalization of signal harmonics[J]. Nanophotonics, 11, 377-390(2022).

    [69] Troian B, Boscolo R, Ricci G et al. Ultra-structural analysis of human spermatozoa by aperture scanning near-field optical microscopy[J]. Journal of Biophotonics, 13, e201960093(2020).

    [70] Xue M F, Ye S Y, Ma X P et al. Single-vesicle infrared nanoscopy for noninvasive tumor malignancy diagnosis[J]. Journal of the American Chemical Society, 144, 20278-20287(2022).

    [71] Kanevche K, Burr D J, Nürnberg D J et al. Infrared nanoscopy and tomography of intracellular structures[J]. Communications Biology, 4, 1341(2021).

    [72] Yang Z B, Tang D Y, Hu J et al. Near-field nanoscopic terahertz imaging of single proteins[J]. Small, 17, e2005814(2021).

    [73] Li H B, Xu J Y, Wei W Y et al. Progress of high spatiotemporal resolution terahertz scanning tunneling microscope for near-field imaging[J]. Laser & Optoelectronics Progress, 60, 1811001(2023).

    [74] Basov D N, Fogler M M, García de Abajo F J. Polaritons in van der Waals materials[J]. Science, 354, aag1992(2016).

    [75] Xia F N, Wang H, Xiao D et al. Two-dimensional material nanophotonics[J]. Nature Photonics, 8, 899-907(2014).

    [76] Luo C, Guo X D, Hu H et al. Probing polaritons in 2D materials[J]. Advanced Optical Materials, 8, 1901416(2020).

    [77] Low T, Chaves A, Caldwell J D et al. Polaritons in layered two-dimensional materials[J]. Nature Materials, 16, 182-194(2017).

    [78] Barcelos I D, Bechtel H A, de Matos C J S et al. Probing polaritons in 2D materials with synchrotron infrared nanospectroscopy[J]. Advanced Optical Materials, 8, 1901091(2020).

    [79] Ma S Q, Deng A L, Lü B S et al. Polaritons in low-dimensional materials and their coupling characteristics[J]. Acta Physica Sinica, 71, 127104(2022).

    [80] Kwon S, Kim J M, Ma P J et al. Near-field nano-optical imaging of van der Waals materials[J]. Advanced Physics Research, 2, 2300009(2023).

    [81] Chen J N, Badioli M, Alonso-González P et al. Optical nano-imaging of gate-tunable graphene plasmons[J]. Nature, 487, 77-81(2012).

    [82] Fei Z, Rodin A S, Andreev G O et al. Gate-tuning of graphene plasmons revealed by infrared nano-imaging[J]. Nature, 487, 82-85(2012).

    [83] Zheng Z B, Li J T, Ma T et al. Tailoring of electromagnetic field localizations by two-dimensional graphene nanostructures[J]. Light, Science & Applications, 6, e17057(2017).

    [84] Ma W L, Alonso-González P, Li S J et al. In-plane anisotropic and ultra-low-loss polaritons in a natural van der Waals crystal[J]. Nature, 562, 557-562(2018).

    [85] Woessner A, Lundeberg M B, Gao Y D et al. Highly confined low-loss plasmons in graphene-boron nitride heterostructures[J]. Nature Materials, 14, 421-425(2015).

    [86] Giles A J, Dai S Y, Vurgaftman I et al. Ultralow-loss polaritons in isotopically pure boron nitride[J]. Nature Materials, 17, 134-139(2018).

    [87] Ni G X, McLeod A S, Sun Z Y et al. Long-lived phonon polaritons in hyperbolic materials[J]. Nano Letters, 21, 5767-5773(2021).

    [88] Ma L, Sun L X, Liu F. The review of near field regulation of hyperbolic phonon polaritons[J]. Journal of Infrared and Millimeter Waves, 42, 611-621(2023).

    [89] Hu G W, Ou Q D, Si G Y et al. Topological polaritons and photonic magic angles in twisted α-MoO3 bilayers[J]. Nature, 582, 209-213(2020).

    [90] Ruta F L, Kim B S Y, Sun Z Y et al. Surface plasmons induce topological transition in graphene/α-MoO3 heterostructures[J]. Nature Communications, 13, 3719(2022).

    [91] Hu H, Chen N, Teng H C et al. Doping-driven topological polaritons in graphene/α-MoO3 heterostructures[J]. Nature Nanotechnology, 17, 940-946(2022).

    [92] Qu Y P, Chen N, Teng H C et al. Tunable planar focusing based on hyperbolic phonon polaritons in α-MoO3[J]. Advanced Materials, 34, 2105590(2022).

    [93] Sternbach A J, Moore S L, Rikhter A et al. Negative refraction in hyperbolic hetero-bicrystals[J]. Science, 379, 555-557(2023).

    [94] Hu H, Chen N, Teng H C et al. Gate-tunable negative refraction of mid-infrared polaritons[J]. Science, 379, 558-561(2023).

    [95] Ma L, Ge A P, Sun L X et al. Focusing of hyperbolic phonon polaritons by bent metal nanowires and their polarization dependence[J]. ACS Photonics, 10, 1841-1849(2023).

    [96] Zheng Z B, Jiang J Y, Xu N S et al. Controlling and focusing In-plane hyperbolic phonon polaritons in α-MoO3 with a curved plasmonic antenna[J]. Advanced Materials, 34, e2104164(2022).

    [97] Martín-Sánchez J, Duan J H, Taboada-Gutiérrez J et al. Focusing of in-plane hyperbolic polaritons in van der Waals crystals with tailored infrared nanoantennas[J]. Science Advances, 7, eabj0127(2021).

    [98] Hu F, Luan Y, Scott M E et al. Imaging exciton-polariton transport in MoSe2 waveguides[J]. Nature Photonics, 11, 356-360(2017).

    [99] Mrejen M, Yadgarov L, Levanon A et al. Transient exciton-polariton dynamics in WSe2 by ultrafast near-field imaging[J]. Science Advances, 5, eaat9618(2019).

    [100] Zhang X, Yan Q Z, Ma W L et al. Ultrafast anisotropic dynamics of hyperbolic nanolight pulse propagation[J]. Science Advances, 9, eadi4407(2023).

    [101] Jiang T, Kravtsov V, Tokman M et al. Ultrafast coherent nonlinear nanooptics and nanoimaging of graphene[J]. Nature Nanotechnology, 14, 838-843(2019).

    [102] Luo W J, Whetten B G, Kravtsov V et al. Ultrafast nanoimaging of electronic coherence of monolayer WSe2[J]. Nano Letters, 23, 1767-1773(2023).

    [103] Rho Y, Yoo S, Durham D B et al. Plasmonic nonlinear energy transfer enhanced second harmonic generation nanoscopy[J]. Nano Letters, 23, 1843-1849(2023).

    [104] Zhu J J. Ultrafast nano-movie of graphene[J]. Nature Nanotechnology, 18, 1263(2023).

    [105] Vettiger P, Despont M, Drechsler U et al. The“Millipede”: more than thousand tips for future AFM storage[J]. IBM Journal of Research and Development, 44, 323-340(2000).

    [106] Lee W, Zhou Z T, Chen X Z et al. A rewritable optical storage medium of silk proteins using near-field nano-optics[J]. Nature Nanotechnology, 15, 941-947(2020).

    Tools

    Get Citation

    Copy Citation Text

    Yuxin Chen, Zhiyuan Li. Progress of Scanning Near-Field Optical Microscopy (Invited)[J]. Acta Optica Sinica, 2024, 44(10): 1026014

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Physical Optics

    Received: Dec. 27, 2023

    Accepted: Mar. 7, 2024

    Published Online: May. 6, 2024

    The Author Email: Li Zhiyuan (phzyli@scut.edu.cn)

    DOI:10.3788/AOS231996

    Topics