Acta Optica Sinica, Volume. 43, Issue 19, 1907001(2023)

Adaptive PDH Frequency Stabilization Method with Large Linear Dynamic Range Based on Two Modulation Depths

Liping Yan, Zhewei Zhang, Jiandong Xie, Yingtian Lou, and Benyong Chen*
Author Affiliations
  • Precision Measurement Laboratory, Zhejiang Sci-Tech University, Hangzhou 310018, Zhejiang , China
  • show less
    References(27)

    [1] Yao B, Chen Q F, Chen Y J et al. 280 mHz linewidth DBR fiber laser based on PDH frequency stabilization with ultrastable cavity[J]. Chinese Journal of Lasers, 48, 0501014(2021).

    [2] Bian Z L, Huang C D, Gao M et al. Research on control technique for Pound-Drever-Hall laser frequency stabilizing system[J]. Chinese Journal of Lasers, 39, 0302001(2012).

    [3] Xu P, Zhang S H, Song R et al. Frequency stabilization experiment of 583 nm laser based on iodine molecular modulation transfer spectrum and optical cavity[J]. Laser & Optoelectronics Progress, 59, 2314001(2022).

    [4] Jiao M X, Jiang F, Su J et al. Design of synthetic-wave absolute-distance interferometric system using two-cavity dual-frequency Nd∶YAG laser with large frequency-difference[J]. Laser & Optoelectronics Progress, 60, 0312025(2023).

    [5] Yin R, Hu L, Wu G L et al. Brillouin laser based on high Q fiber ring resonator[J]. Acta Optica Sinica, 42, 1914002(2022).

    [6] Jiang Z Y, Feng J X, Sun J K et al. 1560 nm laser external cavity resonant frequency multiplier based on MgO∶PPLN crystal[J]. Chinese Journal of Lasers, 49, 1701001(2022).

    [7] Xu X F, Lu Y H, Zhang L et al. Technical study of 8.7 W continuous wave single frequency green laser based on extra-cavity frequency doubling[J]. Chinese Journal of Lasers, 43, 1101010(2016).

    [8] Sun G X, Xiong M, Ling F T et al. Tunable all-solid-state external-cavity frequency-doubled CW 671 nm ring laser[J]. Laser & Infrared, 51, 607-611(2021).

    [9] Du Z J, Zhang Y C, Wang X Y et al. Locking multiple wavelength lasers to the transition of cesium atoms by using a Fabry-Pérot transfer cavity[J]. Acta Optica Sinica, 26, 452-457(2006).

    [10] Wang J, Chen D J, Wei F et al. Research on frequency stabilization technology of transfer cavity based on all-fiber ring resonator[J]. Chinese Journal of Lasers, 47, 0906005(2020).

    [11] Aso Y, Michimura Y, Somiya K et al. Interferometer design of the KAGRA gravitational wave detector[J]. Physical Review D, 88, 043007(2013).

    [12] Acernese F, Agathos M, Agatsuma K et al. Advanced Virgo: a second generation interferometric gravitational wave detector[J]. Classical and Quantum Gravity, 32, 024001(2014).

    [13] Li C L, Deng L H, Yang X H et al. External optical cavity locked by laser frequency[J]. Acta Optica Sinica, 29, 2822-2825(2009).

    [14] Zheng G J, Dai D P, Fang Y F et al. Locking of optical transfer cavity based on PDH technique[J]. Laser & Optoelectronics Progress, 51, 121401(2014).

    [15] Xu X F, Wan M, Lu Y H et al. Research on resonator cavity length feedback and locking based on PDH scheme[J]. Laser Journal, 36, 10-13(2015).

    [16] Guo Y, Qiu Q, Wang Y X et al. Research on stability of Fabry-Perot cavity based on PDH[J]. Chinese Journal of Lasers, 43, 0402003(2016).

    [17] Su J, Jiao M X, Jiang F et al. Research on laser frequency stabilization techniques using orthogonally demodulated Pound-Drever-Hall method[J]. Laser & Optoelectronics Progress, 55, 081404(2018).

    [18] Ma W G, Zhao G, Fu X F et al. Stability analysis of fiber electro-optic modulator based PDH frequency locking technique[J]. Chinese Journal of Lasers, 41, 0115002(2014).

    [19] Day T, Gustafson E K, Byer R L. Sub-hertz relative frequency stabilization of two-diode laser-pumped Nd: YAG lasers locked to a Fabry-Perot interferometer[J]. IEEE Journal of Quantum Electronics, 28, 1106-1117(1992).

    [20] Xin Y, Jiang Y S, Wang L C et al. Analysis of linear dynamic range and sensitivity of error signal in Pound-Drever-Hall method[J]. Laser & Infrared, 40, 471-475(2010).

    [21] Miyoki S, Telada S, Uchiyama T. Expansion of linear range of Pound-Drever-Hall signal[J]. Applied Optics, 49, 5217-5225(2010).

    [22] Hassen S Z S, Petersen I R. Frequency locking of an optical cavity using a time-varying Kalman filtering approach[J]. IEEE Transactions on Control Systems Technology, 22, 1143-1150(2014).

    [23] Schütte D, Hassen S Z S, Karvinen K S et al. Experimental demonstration of frequency autolocking an optical cavity using a time-varying Kalman filter[J]. Physical Review Applied, 5, 014005(2016).

    [24] Li C, Wang H Y, Dmitriev A et al. Broadening the dynamic range of the Pound-Drever-Hall frequency stabilization technique[J]. Results in Physics, 30, 104835(2021).

    [25] Black E D. An introduction to Pound–Drever–Hall laser frequency stabilization[J]. American Journal of Physics, 69, 79-87(2001).

    [26] Su J, Jiao M X, Jiang F. Pound-Drever-Hall laser frequency locking technique based on orthogonal demodulation[J]. Optik, 168, 348-354(2018).

    [27] Xie J D, Yan L P, Chen B Y et al. Automatic offset-frequency locking of external cavity diode laser in wide wavelength range[J]. Optics and Precision Engineering, 29, 211-219(2021).

    Tools

    Get Citation

    Copy Citation Text

    Liping Yan, Zhewei Zhang, Jiandong Xie, Yingtian Lou, Benyong Chen. Adaptive PDH Frequency Stabilization Method with Large Linear Dynamic Range Based on Two Modulation Depths[J]. Acta Optica Sinica, 2023, 43(19): 1907001

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Fourier optics and signal processing

    Received: Apr. 17, 2023

    Accepted: May. 5, 2023

    Published Online: Sep. 28, 2023

    The Author Email: Benyong Chen (chenby@zstu.edu.cn)

    DOI:10.3788/AOS230833

    Topics