Journal of Inorganic Materials, Volume. 39, Issue 12, 1404(2024)
[3] HE T Q, KANG X Y, WANG F J et al. Capacitive contribution matters in facilitating high power battery materials toward fast- charging alkali metal ion batteries[J]. Materials Science & Engineering R-Reports, 100737(2023).
[4] SINGH A N, ISLAM M, MEENA A et al. Unleashing the potential of sodium-ion batteries: current state and future directions for sustainable energy storage[J]. Advanced Functional Materials, 33, 2304617(2023).
[5] YANG H, WANG D, LIU Y L et al. Improvement of cycle life for layered oxide cathodes in sodium-ion batteries[J]. Energy & Environmental Science, 17, 1756(2024).
[6] PANG X W, AN B G, ZHENG S M et al. Cathode materials of metal-ion batteries for low-temperature applications[J]. Journal of Alloys and Compounds, 165142(2022).
[7] LI J Q, LIANG Z X, JIN Y Q et al. A high-voltage cathode material with ultralong cycle performance for sodium-ion batteries[J]. Small Methods, 8, 2301742(2024).
[8] XU S T, YANG Y, TANG F et al. Vanadium fluorophosphates: advanced cathode materials for next-generation secondary batteries[J]. Materials Horizons, 10, 1901(2023).
[9] ZHANG Y C, ZHOU X, YANG C et al. Air-stable prussian white cathode materials for sodium-ion batteries enabled by ZnO surface modification[J]. ACS Applied Materials & Interfaces, 16, 15649(2024).
[10] ZHOU J E, REDDY R C K, ZHONG A et al. Metal-organic framework-based materials for advanced sodium storage: development and anticipation[J]. Advanced Materials, 36, 2312471(2024).
[11] WU Z H, NI Y X, TAN S et al. Realizing high capacity and zero strain in layered oxide cathodes
[12] DELMAS C, FOUASSIER C, HAGENMULLER P. Structural classification and properties of the layered oxides[J]. Physica B & C, 99, 81(1980).
[13] MENDIBOURE A, DELMAS C, HAGENMULLER P. Electrochemical intercalation and deintercalation of Na
[15] CLÉMENT R J, MIDDLEMISS D S, SEYMOUR I D et al. Insights into the nature and evolution upon electrochemical cycling of planar defects in the
[16] GU Z Y, HENG Y L, GUO J Z et al. Nano self-assembly of fluorophosphate cathode induced by surface energy evolution towards high-rate and stable sodium-ion batteries[J]. Nano Research, 16, 439(2023).
[17] HUANG Z X, ZHANG X L, ZHAO X X et al. Hollow Na0.62K0.05Mn0.7Ni0.2Co0.1O2 polyhedra with exposed stable {001} facets and K riveting for sodium-ion batteries[J]. Science China- Materials, 66, 79(2023).
[18] HUANG Z X, ZHANG X L, ZHAO X X et al. Suppressing oxygen redox in layered oxide cathode of sodium-ion batteries with ribbon superstructure and solid-solution behavior[J]. Journal of Materials Science & Technology, 9(2023).
[19] SHISHKIN M, KUMAKURA S, SATO S et al. Unraveling the role of doping in selective stabilization of NaMnO2 polymorphs: combined theoretical and experimental study[J]. Chemistry of Materials, 30, 1257(2018).
[20] JIANG L W, LU Y X, WANG Y S et al. A high-temperature
[21] WANG H J, GAO X, ZHANG S et al. High-entropy Na-deficient layered oxides for sodium-ion batteries[J]. ACS Nano, 17, 12530(2023).
[22] KRESSE G, FURTHMULLER J. Efficiency of
[24] MONKHORST H J, PACK J D. Special points for brillouin-zone integrations[J]. Physical Review B, 13, 5188(1976).
[25] OKHOTNIKOV K, CHARPENTIER T, CADARS S. Supercell program: a combinatorial structure-generation approach for the local- level modeling of atomic substitutions and partial occupancies in crystals[J]. Journal of Cheminformatics, 17(2016).
[27] MAINTZ S, DERINGER V L, TCHOUGRÉEFF A L et al. LOBSTER: a tool to extract chemical bonding from plane-wave based DFT[J]. Journal of Computational Chemistry, 37, 1030(2016).
[28] HENKELMAN G, ARNALDSSON A, JÓNSSON H. A fast and robust algorithm for Bader decomposition of charge density[J]. Computational Materials Science, 36, 354(2006).
[29] SANVILLE E, KENNY S D, SMITH R et al. Improved grid-based algorithm for bader charge allocation[J]. Journal of Computational Chemistry, 28, 899(2007).
[30] MOMMA K, IZUMI F. VESTA3 for three-dimensional visualization of crystal, volumetric and morphology data[J]. Journal of Applied Crystallography, 1272(2011).
[31] ZHANG T, REN M, HUANG Y H et al. Negative lattice expansion in an O3-type transition-metal oxide cathode for highly stable sodium-ion batteries[J]. Angewandte Chemie International Edition, 63, 202316949(2024).
[32] VANAPHUTI P, YAO Z Y, LIU Y T et al. Achieving high stability and performance in P2-type Mn-based layered oxides with tetravalent cations for sodium-ion batteries[J]. Small, 18, 2201086(2022).
[33] LI J C, ZHU G Z, LIANG P et al. Analysis of Si, Cu, and their oxides by X-ray photoelectron spectroscopy[J]. Journal of Chemical Education, 101, 1162(2024).
[34] URBAN A, SEO D H, CEDER G. Computational understanding of Li-ion batteries[J]. npj Computational Materials, 16002(2016).
[35] ZHANG Z H, WU D H, ZHANG X et al. First-principles computational studies on layered Na2Mn3O7 as a high-rate cathode material for sodium ion batteries[J]. Journal of Materials Chemistry A, 6, 6107(2018).
Get Citation
Copy Citation Text
Jingyu ZHOU, Xingyu LI, Xiaolin ZHAO, Youwei WANG, Erhong SONG, Jianjun LIU.
Category:
Received: Apr. 22, 2024
Accepted: --
Published Online: Jan. 21, 2025
The Author Email: Erhong SONG (ehsong@mail.sic.ac.cn)