Optics and Precision Engineering, Volume. 30, Issue 17, 2119(2022)
Neural architecture search algorithm based on voting scheme
[1] GUO Y, CHEN J, DU Q et al. Multi-way backpropagation for training compact deep neural networks[J]. Neural Networks, 126, 250-261(2020).
[3] HE K M, ZHANG X Y, REN S Q et al. Deep residual learning for image recognition[C], 27, 770-778(2016).
[4] CHARLES R Q, HAO S, MO K C et al. PointNet: deep learning on point sets for 3D classification and segmentation[C], 21, 652-660(2017).
[5] ZOPH B, VASUDEVAN V, SHLENS J et al. Learning transferable architectures for scalable image recognition[C], 8697-8710(2018).
[7] CHEN X, XIE L X, WU J et al. Progressive differentiable architecture search: bridging the depth gap between search and evaluation[C], 1294-1303(2019).
[8] DONG X Y, YANG Y. Searching for a robust neural architecture in four GPU hours[C], 1761-1770(2019).
[10] ZHONG Z, YAN J J, WU W et al. Practical block-wise neural network architecture generation[C], 2423-2432(2018).
[13] REAL E, AGGARWAL A, HUANG Y P et al. Regularized evolution for image classifier architecture search[C], 33, 4780-4789(2019).
[14] LIANG T T, WANG Y T, TANG Z et al. OPANAS: one-shot path aggregation network architecture search for object detection[C](10198).
[17] YOU S, HUANG T, YANG M M et al. GreedyNAS: towards fast one-shot NAS with greedy supernet[C], 1996-2005(2020).
[18] LI G H, QIAN G C, DELGADILLO I C et al. SGAS: sequential greedy architecture search[C], 1617-1627(2020).
[20] CHU X X, ZHOU T B, ZHANG B et al.
[22] THOMAS H, QI C R, DESCHAUD J E et al. KPConv: flexible and deformable convolution for point clouds[C], 6410-6419(2019).
[23] KOMARICHEV A, ZHONG Z C, HUA J. A-CNN: annularly convolutional neural networks on point clouds[C], 7413-7422(2019).
[24] LIU X H, HAN Z Z, LIU Y S et al. Point2Sequence: learning the shape representation of 3D point clouds with an attention-based sequence to sequence network[C], 33, 8778-8785(2019).
[25] WANG Y, SUN Y B, LIU Z W et al. Dynamic graph CNN for learning on point clouds[J]. ACM Transactions on Graphics, 38, 1-12(2019).
[26] XU Q G, SUN X D, WU C Y et al. Grid-GCN for fast and scalable point cloud learning[C], 5660-5669(2020).
[27] BEN-SHABAT Y, LINDENBAUM M, FISCHER A. 3DmFV: three-dimensional point cloud classification in real-time using convolutional neural networks[J]. IEEE Robotics and Automation Letters, 3, 3145-3152(2018).
[28] LAN S Y, YU R C, YU G et al. Modeling local geometric structure of 3D point clouds using geo-CNN[C], 998-1008(2019).
[29] XU M T, DING R Y, ZHAO H S et al. PAConv: position adaptive convolution with dynamic kernel assembling on point clouds[C], 3172-3181(2021).
[30] XU M Y, ZHOU Z P, QIAO Y. Geometry sharing network for 3D point cloud classification and segmentation[C], 34, 12500-12507(2020).
Get Citation
Copy Citation Text
Jun YANG, Jingfa ZHANG. Neural architecture search algorithm based on voting scheme[J]. Optics and Precision Engineering, 2022, 30(17): 2119
Category: Information Sciences
Received: Feb. 15, 2022
Accepted: --
Published Online: Oct. 20, 2022
The Author Email: Jun YANG (yangj@mail.lzjtu.cn)