Acta Optica Sinica, Volume. 43, Issue 13, 1310002(2023)

Initial Value Estimation of Digital Image Correlation Method for Two-Dimensional Deformation Measurement Based on GMA Optical Flow Network

Bin Zhao, Xiangyin Meng*, Shide Xiao, Xuan Luo, and Haifeng Jiang
Author Affiliations
  • School of Mechanical Engineering, Southwest Jiaotong University, Chengdu 610031, Sichuan, China
  • show less
    References(30)

    [1] Pan B. Digital image correlation for surface deformation measurement: historical developments, recent advances and future goals[J]. Measurement Science and Technology, 29, 082001(2018).

    [2] Wang X B, Yu B, Dong W et al. Digital image correlation method based on combination of element matching and subset matching for localized deformation measurements[J]. Laser & Optoelectronics Progress, 59, 1012001(2022).

    [3] Hu S T, Sun H, Wang M C et al. Multi-viewpoint and high-precision measurement method for spatial structure deformation[J]. Laser & Optoelectronics Progress, 59, 1912004(2022).

    [4] Wang Y H, Zhu Y L, Gao Q X et al. Position and pose measurement of spatial object based on digital image correlation[J]. Acta Optica Sinica, 42, 0812001(2022).

    [5] Li X, Zhao J Q, Zhang Z M et al. Self-adaptive strain field calculation based on digital image correlation[J]. Acta Optica Sinica, 41, 2312002(2021).

    [6] Du J X, Zhao J Q, Wang H T et al. Envelope element local digital image correlation method for crack tip deformation field measurement[J]. Acta Optica Sinica, 42, 0112003(2022).

    [7] Blaber J, Adair B, Antoniou A. Ncorr: open-source 2D digital image correlation Matlab software[J]. Experimental Mechanics, 55, 1105-1122(2015).

    [8] Liu Y, Xiao S D, Zhang R et al. Initial estimation of digital image correlated deformation based on genetic algorithms[J]. Laser Technology, 44, 130-135(2020).

    [9] Jiang Z Y, Qian K M, Miao H et al. Path-independent digital image correlation with high accuracy, speed and robustness[J]. Optics and Lasers in Engineering, 65, 93-102(2015).

    [10] Tan F X, Xiao S D, Li S Y et al. Digital image correlation method based on dense feature matching[J]. Laser & Optoelectronics Progress, 58, 1612001(2021).

    [11] Zheng C L, He D D, Fei Q G. Improved digital image correlation method based on gray gradient denoised by regularization method[J]. Acta Optica Sinica, 38, 0812002(2018).

    [12] Bruck H A, McNeill S R, Sutton M A et al. Digital image correlation using Newton-Raphson method of partial differential correction[J]. Experimental Mechanics, 29, 261-267(1989).

    [13] Pan B, Li K, Tong W. Fast, robust and accurate digital image correlation calculation without redundant computations[J]. Experimental Mechanics, 53, 1277-1289(2013).

    [14] Baker S, Matthews I. Lucas-Kanade 20 years on: a unifying framework[J]. International Journal of Computer Vision, 56, 221-255(2004).

    [15] Huang J, Sun C R, Lin X L. Displacement field measurement of speckle images using convolutional neural network[J]. Acta Optica Sinica, 41, 2012002(2021).

    [16] Boukhtache S, Abdelouahab K, Berry F et al. When deep learning meets digital image correlation[J]. Optics and Lasers in Engineering, 136, 106308(2021).

    [17] Yang R, Li Y, Zeng D et al. Deep DIC: deep learning-based digital image correlation for end-to-end displacement and strain measurement[J]. Journal of Materials Processing Technology, 302, 117474(2022).

    [18] Dosovitskiy A, Fischer P, Ilg E et al. FlowNet: learning optical flow with convolutional networks[C], 2758-2766(2016).

    [19] Ilg E, Mayer N, Saikia T et al. FlowNet 2.0: evolution of optical flow estimation with deep networks[C], 1647-1655(2017).

    [20] Sun D Q, Yang X D, Liu M Y et al. PWC-net: CNNs for optical flow using pyramid, warping, and cost volume[C], 8934-8943(2018).

    [21] Teed Z, Deng J. RAFT: recurrent all-pairs field transforms for optical flow[M]. Vedaldi A, Bischof H, Brox T, et al. Computer vision-ECCV 2020. Lecture notes in computer science, 12347, 402-419(2020).

    [22] Jiang S H, Campbell D, Lu Y et al. Learning to estimate hidden motions with global motion aggregation[C], 9752-9761(2022).

    [23] Zhang F H, Woodford O J, Prisacariu V et al. Separable flow: learning motion cost volumes for optical flow estimation[C], 10787-10797(2022).

    [24] Xu H F, Zhang J, Cai J F et al. GMFlow: learning optical flow via global matching[C], 8111-8120(2022).

    [25] Huang Z Y, Shi X Y, Zhang C et al. FlowFormer: a transformer architecture for optical flow[M]. Avidan S, Brostow G, Cissé M, et al. Computer vision-ECCV 2022. Lecture notes in computer science, 13677, 668-685(2022).

    [26] Reu P L, Toussaint E, Jones E et al. DIC challenge: developing images and guidelines for evaluating accuracy and resolution of 2D analyses[J]. Experimental Mechanics, 58, 1067-1099(2018).

    [28] Sur F, Blaysat B, Grédiac M. Rendering deformed speckle images with a Boolean model[J]. Journal of Mathematical Imaging and Vision, 60, 634-650(2018).

    [29] Sun D Q, Vlasic D, Herrmann C et al. AutoFlow: learning a better training set for optical flow[C], 10088-10097(2021).

    [30] Pan B, Xie H M. Full-field strain measurement based on least-square fitting of local displacement for digital image correlation method[J]. Acta Optica Sinica, 27, 1980-1986(2007).

    Tools

    Get Citation

    Copy Citation Text

    Bin Zhao, Xiangyin Meng, Shide Xiao, Xuan Luo, Haifeng Jiang. Initial Value Estimation of Digital Image Correlation Method for Two-Dimensional Deformation Measurement Based on GMA Optical Flow Network[J]. Acta Optica Sinica, 2023, 43(13): 1310002

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Image Processing

    Received: Dec. 14, 2022

    Accepted: Mar. 6, 2023

    Published Online: Jul. 12, 2023

    The Author Email: Meng Xiangyin (xymeng@swjtu.edu.cn)

    DOI:10.3788/AOS222143

    Topics