Chinese Journal of Lasers, Volume. 48, Issue 19, 1918005(2021)

Progress and Biomedical Application of Non-Contact Photoacoustic Imaging

Jiao Li1,2、*, Shuai Li1, Jijing Chen1, Tong Lu1, and Feng Gao1,2
Author Affiliations
  • 1College of Precision Instruments and Opto-Electronic Engineering, Tianjin University, Tianjin 300072, China
  • 2Tianjin Key Laboratory of Biomedical Detecting Techniques and Instruments, Tianjin 300072, China
  • show less
    References(91)

    [1] Wang L V, Yao J J. A practical guide to photoacoustic tomography in the life sciences[J]. Nature Methods, 13, 627-638(2016).

    [2] Long X Y, Tian C. Biomedical photoacoustic microscopy:advances in technology and applications[J]. Chinese Journal of Lasers, 47, 0207016(2020).

    [3] Omar M, Aguirre J, Ntziachristos V. Optoacoustic mesoscopy for biomedicine[J]. Nature Biomedical Engineering, 3, 354-370(2019).

    [4] Liu Q, Jin T, Chen Q et al. Research progress of miniaturized photoacoustic imaging technology in biomedical field[J]. Chinese Journal of Lasers, 47, 0207019(2020).

    [5] Na S, Russin J J, Lin L et al. Massively parallel functional photoacoustic computed tomography of the human brain[J]. Nature Biomedical Engineering, 1-9(2021).

    [6] Wang X H, Luo Y, Chen Y W et al. A skull-removed chronic cranial window for ultrasound and photoacoustic imaging of the rodent brain[J]. Frontiers in Neuroscience, 15, 673740(2021).

    [7] Li Y, Li L, Zhu L R et al. Snapshot photoacoustic topography through an ergodic relay for high-throughput imaging of optical absorption[J]. Nature Photonics, 14, 164-170(2020).

    [8] Nguyen V P, Li Y, Zhang W et al. High-resolution multimodal photoacoustic microscopy and optical coherence tomography image-guided laser induced branch retinal vein occlusion in living rabbits[J]. Scientific Reports, 9, 10560(2019).

    [9] Tian C, Zhang W, Mordovanakis A et al. Noninvasive chorioretinal imaging in living rabbits using integrated photoacoustic microscopy and optical coherence tomography[J]. Optics Express, 25, 15947-15955(2017).

    [10] Lu T, Gao F, Song S Z et al. Tumor-specific imaging of small animals based on multi-angle optoacoustic mesoscopy imaging method[J]. Chinese Journal of Lasers, 47, 0207032(2020).

    [11] Wu H Q, Wang H Y, Xie W M et al. Potential applications of photoacoustic imaging in early cancer diagnosis and treatment[J]. Laser & Optoelectronics Progress, 56, 070001(2019).

    [12] Li J, Chekkoury A, Prakash J et al. Spatial heterogeneity of oxygenation and haemodynamics in breast cancer resolved in vivo by conical multispectral optoacoustic mesoscopy[J]. Light: Science & Applications, 9, 57(2020).

    [13] Liu C, Chen J B, Zhang Y C et al. Five-wavelength optical-resolution photoacoustic microscopy of blood and lymphatic vessels[J]. Advanced Photonics, 3, 016002(2021).

    [14] Li R, Phillips E, Wang P et al. Label-free in vivo imaging of peripheral nerve by multispectral photoacoustic tomography[J]. Journal of Biophotonics, 9, 124-128(2016).

    [15] Matthews T P, Zhang C, Yao D K et al. Label-free photoacoustic microscopy of peripheral nerves[J]. Journal of Biomedical Optics, 19, 016004(2014).

    [17] Li X, Kang L, Zhang Y et al. High-speed label-free ultraviolet photoacoustic microscopy for histology-like imaging of unprocessed biological tissues[J]. Optics Letters, 45, 5401-5404(2020).

    [18] Yao D K, Maslov K, Shung K K et al. In vivo label-free photoacoustic microscopy of cell nuclei by excitation of DNA and RNA[J]. Optics Letters, 35, 4139-4141(2010).

    [19] Shi J, Wong T T W, He Y et al. High-resolution, high-contrast mid-infrared imaging of fresh biological samples with ultraviolet-localized photoacoustic microscopy[J]. Nature Photonics, 13, 609-615(2019).

    [20] Pleitez M A, Khan A A, Soldà A et al. Label-free metabolic imaging by mid-infrared optoacoustic microscopy in living cells[J]. Nature Biotechnology, 38, 293-296(2020).

    [21] Li J, Yao Y X, Jiang L W et al. Time-domain terahertz optoacoustics:manipulable water sensing and dampening[J]. Advanced Photonics, 3, 026003(2021).

    [22] Deán-Ben X L, Pang G A, Montero de Espinosa F et al. Non-contact optoacoustic imaging with focused air-coupled transducers[J]. Applied Physics Letters, 107, 051105(2015).

    [23] Ma H G, Xiong K D, Wu J W et al. Noncontact photoacoustic angiography with an air-coupled ultrasonic transducer for evaluation of burn injury[J]. Applied Physics Letters, 114, 133701(2019).

    [24] Ntziachristos V, Yoo J S, van Dam G M. Current concepts and future perspectives on surgical optical imaging in cancer[J]. Journal of Biomedical Optics, 15, 066024(2010).

    [25] Chen Y W, Chen B H, Yu T F et al. Photoacoustic mouse brain imaging using an optical Fabry-Pérot interferometric ultrasound sensor[J]. Frontiers in Neuroscience, 15, 672788(2021).

    [26] Xu M H, Wang L V. Universal back-projection algorithm for photoacoustic computed tomography[J]. Physical Review E, 71, 016706(2005).

    [27] Deán-Ben X L, Razansky D. Optoacoustic image formation approaches: a clinical perspective[J]. Physics in Medicine and Biology, 64, 18TR01(2019).

    [28] Kolkman R G M, Blomme E, Cool T et al. Feasibility of noncontact piezoelectric detection of photoacoustic signals in tissue-mimicking phantoms[J]. Journal of Biomedical Optics, 15, 055011(2010).

    [29] Landa F J, Deán-Ben X L, Montero de Espinosa F et al. Noncontact monitoring of incision depth in laser surgery with air-coupled ultrasound transducers[J]. Optics Letters, 41, 2704-2707(2016).

    [30] Sathiyamoorthy K, Strohm E M, Kolios M C. Low-power noncontact photoacoustic microscope for bioimaging applications[J]. Journal of Biomedical Optics, 22, 046001(2017).

    [31] Sathiyamoorthy K, Kolios M C. Experimental design and numerical investigation of a photoacoustic sensor for a low-power, continuous-wave, laser-based frequency-domain photoacoustic microscopy[J]. Journal of Biomedical Optics, 24, 121912(2019).

    [32] Sim J Y, Ahn C G, Jeong E J et al. In vivo microscopic photoacoustic spectroscopy for non-invasive glucose monitoring invulnerable to skin secretion products[J]. Scientific Reports, 8, 1059(2018).

    [33] Zhu X Y, Huang Z Y, Li Z Y et al. Resolution-matched reflection mode photoacoustic microscopy and optical coherence tomography dual modality system[J]. Photoacoustics, 19, 100188(2020).

    [34] Lin X W, Liang Y Z, Jin L et al. Dual-polarized fiber laser sensor for photoacoustic microscopy[J]. Sensors, 19, 4632(2019).

    [35] George D, Lloyd H, Silverman R H et al. A frequency-domain non-contact photoacoustic microscope based on an adaptive interferometer[J]. Journal of Biophotonics, 11, e201700278(2018).

    [36] Wang Y, Li C H, Wang R K. Noncontact photoacoustic imaging achieved by using a low-coherence interferometer as the acoustic detector[J]. Optics Letters, 36, 3975-3977(2011).

    [38] Buj C, Horstmann J, Münter M et al. Speckle-based off-axis holographic detection for non-contact photoacoustic tomography[J]. Current Directions in Biomedical Engineering, 1, 356-360(2015).

    [39] Horstmann J, Spahr H, Buj C et al. Full-field speckle interferometry for non-contact photoacoustic tomography[J]. Physics in Medicine and Biology, 60, 4045-4058(2015).

    [40] Park S, Rim S, Kim Y et al. Noncontact photoacoustic imaging based on optical quadrature detection with a multiport interferometer[J]. Optics Letters, 44, 2590-2593(2019).

    [41] Chen Z J, Yang S H, Wang Y et al. Noncontact broadband all-optical photoacoustic microscopy based on a low-coherence interferometer[J]. Applied Physics Letters, 106, 043701(2015).

    [42] Speirs R W, Bishop A I. Photoacoustic tomography using a Michelson interferometer with quadrature phase detection[J]. Applied Physics Letters, 103, 053501(2013).

    [43] Liu J, Tang Z L, Tang H C et al. Noncontact photoacoustic tomography imaging using a low-coherence interferometer with rapid detection of phase modulation[J]. Proceedings of SPIE, 9230, 92301P(2014).

    [44] Park S, Rim S, Kim Y et al. Noncontact photoacoustic imaging based on optical quadrature detection with a multiport interferometer[J]. Optics Letters, 44, 2590-2593(2019).

    [45] Chen Z J, Yang S H, Wang Y et al. All-optically integrated photo-acoustic microscopy and optical coherence tomography based on a single Michelson detector[J]. Optics Letters, 40, 2838-2841(2015).

    [46] Qiao W, Chen Z J, Zhou W T et al. All-optical photoacoustic Doppler transverse blood flow imaging[J]. Optics Letters, 43, 2442-2445(2018).

    [47] Sampathkumar A, Hughes D A, Longbottom C et al. All-optical photoacoustic imaging and detection of early-stage dental caries[J]. Proceedings of SPIE, 9306, 93060E(2015).

    [48] Zhou W T, Chen Z J, Zhou Q et al. Optical biopsy of melanoma and basal cell carcinoma progression by noncontact photoacoustic and optical coherence tomography: in vivo multi-parametric characterizing tumor microenvironment[J]. IEEE Transactions on Medical Imaging, 39, 1967-1974(2020).

    [49] Zhou W T, Chen Z J, Yang S H et al. Optical biopsy approach to basal cell carcinoma and melanoma based on all-optically integrated photoacoustic and optical coherence tomography[J]. Optics Letters, 42, 2145-2148(2017).

    [50] Lu J, Gao Y Z, Ma Z H et al. In vivo photoacoustic imaging of blood vessels using a homodyne interferometer with zero-crossing triggering[J]. Journal of Biomedical Optics, 22, 036002(2017).

    [51] Hu Y C, Chen Z J, Xiang L Z et al. Extended depth-of-field all-optical photoacoustic microscopy with a dual non-diffracting Bessel beam[J]. Optics Letters, 44, 1634-1637(2019).

    [53] Berer T, Leiss-Holzinger E, Hochreiner A et al. Multimodal noncontact photoacoustic and optical coherence tomography imaging using wavelength-division multiplexing[J]. Journal of Biomedical Optics, 20, 046013(2015).

    [54] Leiss-Holzinger E, Bauer-Marschallinger J, Hochreiner A et al. Dual modality noncontact photoacoustic and spectral domain OCT imaging[J]. Ultrason Imaging, 38, 19-31(2016).

    [55] Wang Y, Hu Y X, Peng B Y et al. Complete-noncontact photoacoustic microscopy by detection of initial pressures using a 3×3 coupler-based fiber-optic interferometer[J]. Biomedical Optics Express, 11, 505-516(2020).

    [56] Eom J, Park S J, Lee B H. Noncontact photoacoustic tomography of in vivo chicken chorioallantoic membrane based on all-fiber heterodyne interferometry[J]. Journal of Biomedical Optics, 20, 106007(2015).

    [57] Eom J, Shin J, Park S et al. An all-fiber-optic combined system of noncontact photoacoustic tomography and optical coherence tomography[J]. Sensors, 16, 734(2016).

    [58] Tian C, Feng T, Wang C et al. Non-contact photoacoustic imaging using a commercial heterodyne interferometer[J]. IEEE Sensors Journal, 16, 8381-8388(2016).

    [59] Boas D A, Dunn A K. Laser speckle contrast imaging in biomedical optics[J]. Journal of Biomedical Optics, 15, 011109(2010).

    [60] Buj C, Münter M, Schmarbeck B et al. Noncontact holographic detection for photoacoustic tomography[J]. Journal of Biomedical Optics, 22, 106007(2017).

    [61] Knoche S, Kemper B, Wernicke G et al. Modulation analysis in spatial phase shifting electronic speckle pattern interferometry and application for automated data selection on biological specimens[J]. Optics Communications, 270, 68-78(2007).

    [62] Benyamin M, Genish H, Califa R et al. Non-contact photoacoustic imaging using laser speckle contrast analysis[J]. Optics Letters, 44, 3110-3113(2019).

    [63] Zalevsky Z, Beiderman Y, Margalit I et al. Simultaneous remote extraction of multiple speech sources and heart beats from secondary speckles pattern[J]. Optics Express, 17, 21566-21580(2009).

    [64] Lengenfelder B, Mehari F, Hohmann M et al. Contact-free endoscopic photoacoustic sensing using speckle analysis[J]. Journal of Biophotonics, 12, e201900130(2019).

    [65] Lengenfelder B, Mehari F, Hohmann M et al. Remote photoacoustic sensing using speckle-analysis[J]. Scientific Reports, 9, 1057(2019).

    [66] Shabairou N, Lengenfelder B, Hohmann M et al. All-optical, an ultra-thin endoscopic photoacoustic sensor using multi-mode fiber[J]. Scientific Reports, 10, 9142(2020).

    [67] Li H H, Cao F, zhou Y Y et al. Interferometry-free noncontact photoacoustic detection method based on speckle correlation change[J]. Optics Letters, 44, 5481-5484(2019).

    [68] Hajireza P, Shi W, Bell K L et al. Non-interferometric photoacoustic remote sensing microscopy[J]. Light, Science & Applications, 6, e16278(2017).

    [69] Bell K L, Hajireza P, Shi W et al. Temporal evolution of low-coherence reflectrometry signals in photoacoustic remote sensing microscopy[J]. Applied Optics, 56, 5172-5181(2017).

    [70] Bell K L, Hajireza P, Zemp R. Scattering cross-sectional modulation in photoacoustic remote sensing microscopy[J]. Optics Letters, 43, 146-149(2018).

    [71] Bell K L, Hajireza P, Zemp R J. Coherence-gated photoacoustic remote sensing microscopy[J]. Optics Express, 26, 23689-23704(2018).

    [72] Reza P H, Bell K L, Shi W et al. Deep non-contact photoacoustic initial pressure imaging[J]. Optica, 5, 814-820(2018).

    [73] Abbasi S, Bell K L, Ecclestone B et al. Live feedback and 3D photoacoustic remote sensing[J]. Quantitative Imaging in Medicine and Surgery, 11, 1033-1045(2020).

    [74] Abbasi S, Bell K L, Haji Reza P. Rapid high-resolution mosaic acquisition for photoacoustic remote sensing[J]. Sensors, 20, 1027(2020).

    [75] Abbasi S, Le M, Sonier B et al. All-optical reflection-mode microscopic histology of unstained human tissues[J]. Scientific Reports, 9, 13392(2019).

    [76] Abbasi S, Le M, Sonier B et al. Chromophore selective multi-wavelength photoacoustic remote sensing of unstained human tissues[J]. Biomedical Optics Express, 10, 5461-5469(2019).

    [77] Ecclestone B R, Bell K L, Abbasi S et al. Improving maximal safe brain tumor resection with photoacoustic remote sensing microscopy[J]. Scientific Reports, 10, 17211(2020).

    [78] Bell K L, Haji Reza P, Zemp R J. Real-time functional photoacoustic remote sensing microscopy[J]. Optics Letters, 44, 3466-3469(2019).

    [79] Kedarisetti P, Haven N J M, Restall B S et al. Label-free lipid contrast imaging using non-contact near-infrared photoacoustic remote sensing microscopy[J]. Optics Letters, 45, 4559-4562(2020).

    [80] Bell K L, Haji Reza P. Non-contact reflection-mode optical absorption spectroscopy using photoacoustic remote sensing[J]. Optics Letters, 45, 3427-3430(2020).

    [81] Zhou J S, Wang W, Jing L L et al. Dual-modal imaging with non-contact photoacoustic microscopy and fluorescence microscopy[J]. Optics Letters, 46, 997-1000(2021).

    [82] Bell K L, Abbasi S, Dinakaran D et al. Reflection-mode virtual histology using photoacoustic remote sensing microscopy[J]. Scientific Reports, 10, 19121(2020).

    [83] Ecclestone B R, Abbasi S, Bell K L et al. Towards virtual biopsies of gastrointestinal tissues using photoacoustic remote sensing microscopy[J]. Quantitative Imaging in Medicine and Surgery, 11, 1070-1077(2020).

    [84] Restall B S, Haven N J M, RKedarisetti P et al. In vivo combined virtual histology and vascular imaging with dual-wavelength photoacoustic remote sensing microscopy[J]. OSA Continuum, 3, 2680-2689(2020).

    [85] Ecclestone B R, Dinakaran D, Reza P H. Single acquisition label-free histology-like imaging with dual-contrast photoacoustic remote sensing microscopy[J]. Journal of Biomedical Optics, 26, 056007(2021).

    [86] Haven N J M, Kedarisetti P, Restall B S et al. Reflective objective-based ultraviolet photoacoustic remote sensing virtual histopathology[J]. Optics Letters, 45, 535-538(2020).

    [87] Haven N J M, Bell K L, Kedarisetti P et al. Ultraviolet photoacoustic remote sensing microscopy[J]. Optics Letters, 44, 3586-3589(2019).

    [88] Shu X, Li H, Dong B Q et al. Quantifying melanin concentration in retinal pigment epithelium using broadband photoacoustic microscopy[J]. Biomedical Optics Express, 8, 2851-2865(2017).

    [89] Chen S Y, Yi J, Zhang H F. Measuring oxygen saturation in retinal and choroidal circulations in rats using visible light optical coherence tomography angiography[J]. Biomedical Optics Express, 6, 2840-2853(2015).

    [90] Song W, Wei Q, Liu W Z et al. A combined method to quantify the retinal metabolic rate of oxygen using photoacoustic ophthalmoscopy and optical coherence tomography[J]. Scientific Reports, 4, 6525(2014).

    [91] Hosseinaee Z, Nima A, Pellegrino N et al. Functional and structural ophthalmic imaging using noncontact multimodal photoacoustic remote sensing microscopy and optical coherence tomography[J]. Scientific Reports, 11, 11466(2021).

    Tools

    Get Citation

    Copy Citation Text

    Jiao Li, Shuai Li, Jijing Chen, Tong Lu, Feng Gao. Progress and Biomedical Application of Non-Contact Photoacoustic Imaging[J]. Chinese Journal of Lasers, 2021, 48(19): 1918005

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Received: Jun. 16, 2021

    Accepted: Jul. 21, 2021

    Published Online: Sep. 24, 2021

    The Author Email: Jiao Li (jiaoli@tju.edu.cn)

    DOI:10.3788/CJL202148.1918005

    Topics